梯度集中TensorFlow 这个Python套件在TensorFlow中实现了梯度集中,这是Yong等人建议的一种简单有效的针对深度神经网络的优化技术。 。 它既可以加速训练过程,又可以提高DNN的最终泛化性能。 安装 运行以下命令进行安装: pip install gradient-centralization-tf 用法 为指定的优化器创建集中式渐变函数。 参数: optimizer :一个tf.keras.optimizers.Optimizer object 。 您正在使用的优化程序。 例子: >> > opt = tf . keras . optimizers . Adam ( learning_rate = 0.1 ) >> > optimizer . get_gradients = gctf . centralized_gradients_for_optimize
1
神经教程 人工神经网络(ANN)从头开始于python教程。 基于此中篇文章的ANN结构以及基于此的对数据科学文章的输入 使用简单的2层设置-一个包含四个节点的隐藏层和一个输出层。 这两层都使用S型激活功能。 增加了学习率,并可能增加了偏见项。 我通过一个玩具示例,使用合成的土壤水分和土壤粒度数据来预测CO 2通量。 我看一下预测如何根据训练数据集的属性而变化。 如果您的训练数据集不能完全覆盖所有值范围,则您的模型将无法“学习”在这些条件下如何进行准确的预测。
2021-10-23 15:59:22 138KB JupyterNotebook
1
Pytorch-图像分类 使用pytorch进行图像分类的简单演示。 在这里,我们使用包含43956 张图像的自定义数据集,属于11 个类别进行训练(和验证)。 此外,我们比较了三种不同的训练方法。 从头开始培训,微调的convnet和convnet为特征提取,用预训练pytorch模型的帮助。 使用的模型包括: VGG11、Resnet18 和 MobilenetV2 。 依赖关系 Python3,Scikit学习 Pytorch, PIL Torchsummary,Tensorboard pip install torchsummary # keras-summary pip install tensorboard # tensoflow-logging 注意:在训练之前将库更新到最新版本。 怎么跑 下载并提取训练数据集: 运行以下脚本进行训练和/或测试 python t
1
讽刺检测 讽刺是口头讽刺的一种形式,旨在表达蔑视或嘲笑。 嘲讽依靠说话者和听众之间的共同知识,需要机智才能理解和产生机智。 在日常互动中,我们使用手势和模拟,语调和韵律来暗示讽刺意向。 由于我们无法获得此类副语言提示,因此检测书面文本中的讽刺是一项艰巨的任务。 我研究了多种方法来检测推文中的讽刺,这些方法使用传统的机器学习(离散特征上的SVM和Logistic回归器)和深度学习模型(CNN,LSTM,GRU,双向LSTM和基于注意力的LSTM)进行评估,并在4不同的Twitter数据集( 详细信息)。 该研究项目的完成是部分满足了曼彻斯特大学计算机科学理学学士学位的要求,并且在我的导师和导
1
人类跌倒检测 我们通过支持多相机和多人跟踪以及长时记忆(LSTM)神经网络来预测两个类别,从而增加了人体姿势估计(openpifpaf库),以预测两个类别:“跌倒”或“不跌倒”。 从这些姿势中,我们提取了LSTM分类器处理的五个时空特征。 设置 pip install -r requirements.txt 用法 python3 fall_detector.py 争论 描述 默认 num_cams 要处理的摄像机/视频数量 1个 视频 视频文件的路径(无从摄像机捕获实时视频的路径) 对于单个视频跌倒检测(-​​-num_cams = 1),将视频另存为abc.xyz并设置--video = abc.xyz 对于2个视频跌落检测(--num_cams = 2),将您的视频另存为abc1.xyz和abc2.xyz并设置--video = abc.xyz 没有任何 save_output
2021-10-21 16:49:03 2.27MB deep-learning video-processing lstm neural-networks
1
用于真实图像超分辨率的深循环生成对抗性残差卷积网络(SRResCycGAN) 网络的官方PyTorch实现,如论文。 这项工作以高x4放大系数参加了挑战赛道3。 抽象的 最近基于深度学习的单图像超分辨率(SISR)方法主要是在干净的数据域中训练其模型,其中低分辨率(LR)和高分辨率(HR)图像来自无噪声设置(相同域)到双三次降采样假设。 但是,这种降级过程在实际环境中不可用。 我们考虑到深度循环网络结构,以保持LR和HR数据分布之间的域一致性,这是受CycleGAN在图像到图像翻译应用程序中最近成功的启发。 通过以端对端方式从LR到HR域转换的生成对抗网络(GAN)框架进行训练,我们提出了超分辨率残留循环生成对抗网络(SRResCycGAN)。 我们在定量和定性实验中证明了我们提出的方法,该方法很好地推广到了真实图像的超分辨率,并且很容易部署到移动/嵌入式设备中。 此外,我们在AIM 2
1
神经网络:可定制的深度神经网络的简单实现
2021-10-20 16:29:52 4KB deep-neural-networks ai deep-learning Python
1
(亲测可用)tensorflow训练模型进行调参,生成mobilenet_v1.pb模型文件用于预测
2021-10-19 13:41:16 16.29MB mobilenet tensorflow neural netwo
1
在TensorFlow 2.0中实现的YoloV3 此仓库使用所有最佳实践在TensorFlow 2.0中提供了YoloV3的干净实现。 主要特点 TensorFlow 2.0 yolov3具有预先训练的权重 yolov3-tiny具有预先训练的权重 推论实例 转移学习的例子 使用tf.GradientTape急切模式训练 使用model.fit图模式训练 具有tf.keras.layers功能模型 使用tf.data输入管道 Tensorflow服务 向量化转换 GPU加速 完全集成的absl-py从 干净的实施 遵循最佳做法 麻省理工学院执照 用法 安装 conda(推荐) # Tensorflow CPU conda env create -f conda-cpu.yml conda activate yolov3-tf2-cpu # Tensorflow GPU conda env create -f conda-gpu.yml conda activate yolov3-tf2-gpu 点子 pip install -r requireme
1
| 近年来提出的神经主题模型变体的PyTorch实现包括NVDM-GSM,WTM-MMD(W-LDA),WTM-GMM,ETM,BATM和GMNTM。 该项目的目的是为神经主题模型提供一个实用且可行的示例,以促进相关领域的研究。 模型的配置与论文中提出的模型并不完全相同,并且没有对超参数进行仔细的微调,但是我选择覆盖其中的核心思想。 从经验上讲,NTM优于经典的统计主题模型,尤其是在短文本上。 出于评估目的,提供了短消息( ),对话话语( )和对话( )的数据集,所有这些均以中文显示。 作为与NTM的比较,还提供了基于gensim库的现成的LDA脚本。 如果您对此实施有任何疑问或建议,请随时与我联系。 为了更好,欢迎加入我的行列。 ;) 注意:如果发现加载此自述文件的图片太慢,则可以在我的博客上阅读此。 目录 2.6 BATM 3.数据集 3.1 cnews10k 3.
2021-10-18 17:24:19 22.99MB JupyterNotebook
1