A very good textbook for researchers working on the NN theory, yet if you just want to know what is NN, it perhaps is too much for you to digest!
2021-10-11 22:54:55 40.44MB Neural networks
1
PyTorch-NEAT NEAT(增强拓扑的神经进化)方法的PyTorch实现,最初是由Kenneth O. Stanley创建的,是进化神经网络的一种有原则的方法。 。 实验 PyTorch-NEAT当前包含三个内置实验:XOR,单极平衡和汽车爬山。 异或实验 使用以下命令运行: python xor_run.py将运行多达150代,初始种群为150个基因组。 当/如果找到解决方案,将显示解决方案网络以及有关试验的统计信息。 随意运行多个试用版-只需​​增加xor_run.py文件中外部for循环的范围即可。 单极平衡 使用以下命令运行: python pole_run.py将运行多达150代,初始种群为150个基因组。 在OpenAI体育馆环境中跑步。 当/如果找到解决方案,则将在OpenAI体育馆中显示解决方案网络以及评估结果。 汽车登山实验 使用以下命令运行: python m
2021-10-11 22:39:46 41KB neat neuroevolution pytorch neural-networks
1
演示代码(请参阅jupyter笔记本): 使用深度卷积自动编码器对地震信号进行非监督(自我监督)区分 您可以从这里获取论文: 连结1: 连结2: 您可以从此处获取训练数据集: 参考: Mousavi, S. M., W. Zhu, W. Ellsworth, G. Beroza (2019). Unsupervised Clustering of Seismic Signals Using Deep Convolutional Autoencoders, IEEE Geoscience and Remote Sensing Letters, 1 - 5, doi:10.1109/LGRS.2019.2909218.
1
概述 基于高异质/均匀时间序列多传感器数据的实时异常检测的无监督特征选择和/或无监督深度卷积神经网络和lstm自动编码器的原型。 内置时间序列预测器的可解释AI原型。 无监督特征选择的直观表示如下所示。 无监督实时点异常检测的直观表示如下所示。 从当地的解释,全球理解与解释的AI树木-从这里动机- ,图片来源-https: MSDA 1.0.8 什么是MDSA? MSDA是Python中的开源low-code多传感器数据分析库,旨在在时序多传感器数据分析和实验中将假设减少到洞察周期。 它使用户能够快速,高效地执行端到端的概念验证实验。 该模块通过捕获变化和趋势来建立多维时间序列中的事件,以建立旨在识别相关特征的关系,从而有助于从原始传感器信号中选择特征。 此外,为精确检测实时流数据中的异常,还设计了无监督的深度卷积神经网络以及基于lstm自动编码器的检测器,以在GPU / C
2021-10-11 18:35:00 6.78MB visualization python iot deep-neural-networks
1
GRU神经网络MATLAB代码神经解码: 包含许多用于解码神经活动的方法的python软件包 该软件包包含经典解码方法和现代机器学习方法的混合。 对于回归,我们目前包括:维纳滤波器,维纳级联,卡尔曼滤波器,朴素贝叶斯,支持向量回归,XGBoost,密集神经网络,递归神经网络,GRU,LSTM。 对于分类,我们目前包括:Logistic回归,支持向量分类,XGBoost,密集神经网络,递归神经网络,GRU,LSTM。 该软件包最初是为回归而设计的,只是添加了分类功能-因此,自述文件,示例和预处理功能仍可满足回归的需要。 我们正在为分类添加更多内容。 我们的手稿和数据集 该程序包随附一个,用于比较这些方法在多个数据集上的性能。 如果您使用我们的代码或数据进行研究,请引用该手稿,我们将不胜感激。 用于纸张的代码位于“ Paper_code”文件夹中。 在本自述文件的底部进一步进行了描述。 可以下载论文中使用的所有3个数据集(运动皮层,体感皮层和海马体)。 它们具有matlab和python格式,可以在下面描述的示例文件中使用。 安装 可以在命令行中通过pip安装此软件包,方法是键入 pip
2021-10-11 15:23:11 1.09MB 系统开源
1
持续学习 这是以下论文中描述的持续学习实验的PyTorch实现: 三种持续学习的方案() 具有反馈连接的生成性重放是持续学习的通用策略() 要求 当前版本的代码已经过测试: pytorch 1.1.0 torchvision 0.2.2 运行实验 可以使用main.py运行单个实验。 主要选项有: --experiment :哪个任务协议? ( splitMNIST | permMNIST ) --scenario :根据哪种情况? ( task | domain | class ) --tasks :多少个任务? 要运行特定方法,请使用以下命令: 上下文相关门(XdG):
1
교과서3판 2019년5月출간,출판사 Se Se Se(Sebastian Raschka)미자리리리(Vahid Mirjalili)셀러베트스베셀러“ ” 。 주세요이나오류가있다블면이그블로그블로 알려주세요주세요주세요주세요 주세요주세요주세요 교과서1저장소는다음과다(1판이판에다2)。 노트북 도움말은 에장의장의 을을 하세요。 open_dir 폴더로이동합니다。 또는 ipynb 바로바있습니다있습니다。 nbviewer 뷰어로뷰어링크입니다。 colab (Colab)링크입니다。 [이터에서배운다[] [ ] [ ] [ ] open
1
循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。但是,目前网上与RNNs有关的学习资料很少,因此该系列便是介绍RNNs的原理以及如何实现。
2021-10-10 13:49:59 1.14MB RNN
1
在本文中,我简要介绍了ONNX运行时和ONNX格式。
2021-10-09 19:50:07 620KB Java artificial-intelligence neural-network
1
吴恩达在coursera上深度学习第一课Neural Network and Deep Learning的课后编程答案,作业是用python写的,大家一起深度学习吧
2021-10-09 13:40:37 9.81MB Neural Network and Deep
1