句子分类 该项目的目标是根据类型对句子进行分类: 陈述(陈述句) 问题(疑问句) 感叹号(感叹句) 命令(命令句) 以上每个广泛的句子类别都可以扩展,并且可以进行更深入的介绍。 这些网络和脚本的设计方式应该可以扩展,以对其他句子类型进行分类(如果提供了数据)。 它是为在应用开发的,并在上随附了有关构建实用/应用的神经网络的。 请随意添加PR,以自由更新,改进和使用! 安装 如果您有GPU,请安装CUDA和CuDNN(在您选择的系统上) 安装要求(在python 3上,python 2.x无效) pip3 install -r requirements.txt --user 执行: 预训练模型: python3 sentence_cnn_save.py models/cnn 要建立自己的模型: python3 sentence_cnn_save.py models/
2024-10-20 17:03:31 23.04MB neural-network fasttext
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
gnina(发音为NEE-na)是一个分子对接程序,具有使用卷积神经网络对配体进行评分和优化的综合支持。 这是的叉子,是的叉子。 帮助 请。 提供一个示例Colab笔记本,其中显示了如何使用gnina。 引文 如果您发现gnina有用,请引用我们的论文: GNINA 1.0:分子对接与深度学习(主要应用引用) 阿McNutt,P Francoeur,R Aggarwal,T Masuda,R Meli,M Ragoza,J Sunseri,DR Koes。 ChemRxiv,2021年 卷积神经网络的蛋白质配体评分(主要方法引用) M Ragoza,J Hochuli,E Idrobo,J Sunseri,DR Koes。 J.化学。 Inf。 模型,2017 基于原子网格的卷积神经网络的配体姿态优化M Ragoza,L Turner和DR Koes。 分子与材料的机器学习NIP
1
作者 项目 文献资料 建置状态 代码质量 覆盖范围 NumPyNet Linux / MacOS : Windows : 编码: 编码节拍: 纯NumPy中的神经网络-NumPyNet 在神经网络模型的纯Numpy中实现。 NumPyNet支持语法非常接近Keras之一,但它使用只写了Numpy功能:这种方式很轻,快速安装和使用/修改。 理论 先决条件 安装 效率 用法 贡献 参考 作者 执照 致谢 引文 概述 NumPyNet是作为研究神经网络模型的教育框架而诞生的。 编写该指南的目的是平衡代码的可读性和计算性能,并提供大量文档,以更好地理解每个脚本的功能。 该库是用纯Python编写的,唯一使用的外部库是Numpy (科学研究的基本软件包)。 尽管所有常见的库都通过广泛的文档进行了关联,但对于新用户而言,通常很难在其中引用的许多超链接和论文中四处移动。 NumPyNet试
1
NumpyDL:Numpy深度学习库 内容描述 NumpyDL是: 基于纯Numpy / Python 对于DL教育 特征 其主要特点是: 纯洁的脾气暴躁 原生于Python 基本支持自动区分 提供了常用的模型:MLP,RNN,LSTM和CNN 几个AI任务的示例 对于玩具聊天机器人应用 文献资料 可用的在线文档: 最新文件 开发文档 稳定文档 可用的离线PDF: 最新PDF 安装 使用pip安装NumpyDL: $ > pip install npdl 从源代码安装: $ > python setup.py install 例子 NumpyDL提供了一些AI任务示例: 句子分类 示例/lstm_sentence_classification.py中的LSTM 例子中的CNN / cnn_sentence_classification.py mnist手写识
2024-02-23 17:06:34 16.61MB deep-neural-networks deep-learning
1
生成绘画火炬 根据作者的,对PyTorch重新。 先决条件 该代码已经在Ubuntu 14.04上进行了测试,以下是需要安装的主要组件: Python3 PyTorch 1.0+ 火炬视觉0.2.0+ 张量板 pyyaml 训练模型 python train.py --config configs/config.yaml 检查点和日志将保存到checkpoints 。 用训练好的模型进行测试 默认情况下,它将在检查点中加载最新保存的模型。 您也可以使用--iter通过迭代选择保存的模型。 训练有素的PyTorch模型:[ ] [] python test_single.py \ --image examples/imagenet/imagenet_patches_ILSVRC2012_val_00008210_input.png \ --mask examples/cen
1
内含Jeff Heaton的三本关于神经网络的英文书: (1)《Introduction to Neural Networks for Java, 2nd Edition》; (2)《Introduction to neural networks for c# Second Edtion》; (3)《Introduction to the Math of Neural Network》
2024-01-13 12:19:49 6.76MB Neural Networks Java/C# Jeff
1
A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
2024-01-13 11:04:46 4.97MB neural netwo machine lear
1
歌词条件下的神经旋律生成(在演示)。 2020年9月19日,@@@:可以从下载完整的歌词旋律源。 2020年9月17日,@@@:更新了读者的答案,并发布了此工作的更新版本在多媒体计算中ACM交易接受了共享通信与应用(TOMCCAP),2021年。@ 2020年2月14日:发布了用于歌词生成的常规LSTM-GAN编码, 为 如果您使用我们的歌词旋律数据集和歌词嵌入(包括在我们的歌词数据集中经过专门训练的跳码mdoel和BERT模型),请引用我们的论文“用于从歌词生成旋律的有条件LSTM-GAN”,网址为 ,在2021年被ACM多媒体计算通信和应用交易记录(TOMCCAP)接受。您可以找到我们在本文的主观评估中使用的12种旋律(melodies_experiment.zip)。 这12种旋律分别通过基线方法,LSTM-GAN和基本事实生成。 -基线方法:bas1-4--; --LSTM-GA
2023-12-06 17:18:57 583.79MB JupyterNotebook
1