内容概要:本文系统性地介绍了MCP(Memory-Centric Planning,记忆中心化规划)范式的核心概念、技术架构和开发流程。MCP范式旨在解决传统AI Agent(规则驱动型和数据驱动型)在灵活性、规划能力和场景适应性方面的不足。它通过将长期记忆和短期记忆结合,实现实时推理和策略调整,并采用模块化架构(感知、记忆、规划、执行)。文章详细讲解了基于Python的MCP开发入门,包括搭建记忆模块、构建规划模块和整合执行闭环。最后,通过智能客服、自动驾驶和金融分析三个行业的实战案例,展示了MCP范式在多场景下的应用效果和优势,如用户满意度提升、行驶安全性和收益率提高等。; 适合人群:对AI Agent开发感兴趣的初学者以及有一定编程基础的研发人员。; 使用场景及目标:①理解MCP范式的原理和优势;②掌握基于Python构建MCP Agent的具体步骤;③学习MCP范式在不同行业场景中的应用实践。; 其他说明:本文不仅提供了理论知识,还结合实际案例进行讲解,建议读者跟随文中提供的代码示例进行实践操作,以便更好地理解和掌握MCP范式的开发方法。
2025-09-26 12:46:36 5KB AI Agent Python
1
在当前数字时代,计算机象棋游戏的开发是一个广受欢迎且充满挑战的领域。借助先进的游戏引擎和人工智能算法,开发者可以打造出既具有教育意义又富有娱乐性的软件产品。本文将深入探讨一套名为“unity 象棋源码 带ai 算法完整”的文件包,这套资源旨在帮助游戏开发者快速构建一个具备人工智能的象棋游戏。 源码文件包括了NGUI界面,这意味着游戏的用户界面设计将采用Unity的NGUI插件,它能够提供一个流畅、直观的交互体验。NGUI的使用能够保证开发者无需从零开始设计界面,同时也为后续的界面美化和功能拓展提供了便利。 源码包的第二个文件为“爱给网-源码-免费下载.txt”,这个文件可能是一个说明文档,详细描述了如何从爱给网上免费下载所需的资源和代码。爱给网是一个资源分享平台,提供各种游戏开发所需素材,包括音乐、音效、图像、脚本等,这对于游戏开发者来说是一个宝贵资源。 最后一个文件“unity象棋-PC_chess”暗示了这份源码支持在个人电脑上运行的棋类游戏。PC_chess可能是指游戏运行的具体平台或者游戏类型,强调了源码的兼容性和游戏的分类。 这套源码的核心是人工智能算法,它能够与人类玩家进行对弈,提升游戏的互动性和趣味性。在Unity环境中,开发者可以利用内置的AI算法,或者自行设计算法,使得电脑对手能够模拟真实人类的下棋思维,甚至能够根据对手的策略进行自我学习和适应。这样的人工智能不仅能够为游戏提供挑战,还能使玩家在与AI对弈中学习和提高自己的棋艺。 源码中的人工智能算法可能基于传统的象棋引擎,如Minimax算法配合Alpha-Beta剪枝等策略,或者更高级的机器学习技术,如深度学习和强化学习。这样的AI能够做出合理决策,并在一定程度上模拟人类的直觉和经验。开发者可以通过不断调整和优化算法,以提供越来越高的游戏难度和更佳的用户体验。 除了核心的AI算法和NGUI界面,源码包可能还包括了棋盘和棋子的设计、游戏规则的实现、用户交互逻辑、得分和胜负判定等重要组件。为了让游戏能够吸引更多的玩家,开发者还需要关注用户体验设计,如流畅的动画效果、友好的用户交互和清晰的规则说明。此外,为了使游戏更具挑战性,还可以设计不同的难度级别,甚至包括在线对战功能。 这份“unity 象棋源码 带ai 算法完整”的文件包,为游戏开发者提供了一套完整的工具和资源,可以帮助他们快速构建出一个具有人工智能的象棋游戏。通过利用Unity的强大功能和NGUI界面插件,以及精心设计的人工智能算法,开发者可以制作出既好玩又具有教育意义的象棋游戏,满足不同玩家的需求。
2025-09-25 22:30:10 144.48MB unity
1
CValley Xtream Path是一款国外开发的超强大的Adobe Illustrator的路径编辑插件。使用Xtream Path可以实现很多对于路径的操作(拖曳,拉伸,推动等),当编辑路径时也不会受控制点的约束,允许把路径拖曳到任何地方,以及在你想要的位置编辑路径,使得在使用Illustrator时,编辑路径比以前灵活许多;同时,Smart Rounding功能允许你只要按一下鼠标,就可以使尖角圆滑,如果应用在文本上,就可以产生一种新字体。 内有序列号
2025-09-25 19:22:37 5.89MB Adobe Illustrator Xtream Path
1
AI+CDR+EPS+FH+PDF+PSD+TGA缩略图补丁
2025-09-25 00:28:54 1.59MB
1
### IEEE Std 802.11ai™-2016: 快速初始链路建立标准 #### 概述 IEEE Std 802.11ai™-2016 是对 IEEE Std 802.11™-2016 的补充修正案,它专注于提供一种更快捷的无线局域网(Wireless Local Area Network, WLAN)连接机制——即快速初始链路建立(Fast Initial Link Setup, Fils)。这一标准旨在减少用户在接入WLAN时的等待时间,并增强网络的安全性。 #### 标准背景与目的 IEEE 802.11系列标准是全球范围内广泛采用的无线局域网技术规范的基础。随着移动设备和应用需求的增长,提高WLAN连接速度、增强安全性成为了一个迫切的需求。IEEE Std 802.11ai™-2016 通过引入Fils机制来解决这些问题,使得设备能够更快地完成认证过程并接入网络。 #### 核心知识点详解 **1. 快速初始链路建立(Fast Initial Link Setup, Fils)** Fils是一种新的认证机制,它允许客户端设备在首次连接或重新连接到同一网络时实现快速认证。通过预共享密钥(Pre-shared Key, PSK)或证书等安全凭证,Fils能够在无需用户干预的情况下自动完成认证过程。这一机制大大缩短了设备从开机到成功连接网络所需的时间。 **2. 技术特点** - **预认证**:在客户端与接入点之间预先进行认证交换,确保连接时能够快速接入。 - **密钥缓存**:客户端设备可以缓存认证过程中使用的密钥,以便于后续连接时复用这些密钥,进一步加快认证速度。 - **互操作性**:Fils机制支持与其他认证方法(如802.1X)的互操作,确保不同类型的设备和网络之间的兼容性。 **3. 安全性增强** - **加密技术**:利用高级加密标准(AES)等现代加密算法,为数据传输提供强大的安全保障。 - **身份验证**:通过证书或PSK等方式进行双向身份验证,确保连接双方的身份可信。 - **抵御攻击**:Fils设计考虑到了对抗中间人攻击、重放攻击等常见网络安全威胁的方法。 **4. 实施与应用场景** - **企业环境**:对于需要快速连接的企业级应用,如会议系统、移动办公设备等,Fils可以显著提升用户体验。 - **公共Wi-Fi**:在机场、酒店等公共场所部署Fils,可以让用户在连接公共Wi-Fi时享受更短的等待时间和更高的安全性。 - **物联网(IoT)**:物联网设备通常资源有限,快速且安全的连接对于这些设备至关重要。 #### 结论 IEEE Std 802.11ai™-2016 通过引入Fils机制,解决了传统WLAN连接过程中存在的效率低下和安全性问题。该标准不仅提高了用户的体验,还增强了网络的整体安全性,为未来无线通信技术的发展奠定了坚实的基础。随着物联网和移动互联网的快速发展,Fils将在更多领域得到广泛应用,为用户提供更加便捷、安全的网络连接服务。
2025-09-24 22:22:56 3.58MB
1
Dify根据知识库生成可执行Sql语句
2025-09-24 19:39:36 21KB Ai
1
国土空间规划是涉及自然资源和国土空间综合管理的一项重要工作,对促进区域经济社会发展、优化国土空间布局、保护生态环境等具有重要意义。近年来,随着信息技术的飞速发展,特别是地理信息大数据技术的应用,为国土空间规划提供了新的技术手段和工具。本研究以地理信息大数据驱动的国土空间规划智能决策系统为研究对象,旨在构建一个科学高效、决策智能化的规划平台。 研究背景与意义主要体现在以下几个方面:地理信息大数据的出现改变了传统国土空间规划的数据采集和处理方式,提供了更加丰富和精确的信息资源。通过应用大数据技术,可以实现对国土空间多维度、动态化的分析,为规划决策提供更为准确的依据。再次,随着人工智能和机器学习等技术的发展,利用智能算法对大数据进行分析和挖掘,可以提炼出有价值的信息和知识,支撑国土空间规划的智能决策。 研究目标与内容涵盖了对地理信息大数据在国土空间规划中应用的理论与实践研究。目标主要集中在构建一个集成大数据技术、人工智能和智能决策系统的国土空间规划平台,实现在规划编制、实施、监测和评价等环节中的智能化应用。内容包括研究地理信息大数据的特点和价值,探讨智能决策系统的设计与实施路径,以及评估其在实际国土空间规划中的应用效果。 研究方法与技术路线则涉及了系统分析、数据挖掘、模型构建等多个方面。采用的技术包括但不限于地理信息系统(GIS)、大数据存储与处理技术、人工智能算法、以及相关的数据分析技术。研究中将通过实际案例验证所构建智能决策系统的有效性和实用性。 智能决策系统理论部分主要探讨了如何将人工智能与机器学习技术融入国土空间规划决策过程中,以及如何在系统中集成和优化这些技术,以实现智能决策模型的选择、构建、训练、验证和部署。 在国土空间规划智能决策系统架构设计方面,研究明确了系统的总体架构、功能模块设计和系统安全与隐私保护策略。系统总体架构需保证技术的先进性和系统的稳定性;功能模块设计应满足实际规划过程中的多样化需求;系统安全与隐私保护是确保信息处理过程中数据安全的重要环节。 地理信息大数据挖掘与分析部分是研究的核心内容之一。它包括数据预处理、特征提取与模式识别、时空动态分析等关键环节。通过对大数据进行有效处理和分析,可以发现数据中的潜在规律和趋势,为决策提供依据。 智能决策模型构建与应用部分则关注于如何利用所挖掘的数据构建模型,并将模型应用于实际的规划决策过程中。这包括决策模型的选择与构建、模型训练与验证、以及模型部署与在线服务等步骤。 实证研究与案例分析部分通过选取具体的国土空间规划案例,验证了智能决策系统架构设计、数据挖掘与分析、决策模型构建的实际应用效果,以及系统在解决具体规划问题中的表现。 在总结与展望部分,研究回顾了整个研究过程中的成果,分析了当前研究的不足与局限,并对未来的发展趋势和技术进步进行了展望。 在技术应用方面,地理信息大数据可以为国土空间规划提供从宏观到微观的多尺度分析,支持土地利用优化、城乡规划布局、生态环境监测等多方面的规划工作。通过对大数据进行深入分析,可以增强规划方案的科学性和前瞻性,提升国土空间规划的效率和质量。 人工智能与机器学习技术在处理大量、复杂数据时具有显著优势,能够自动提取有用信息,并根据数据驱动的分析结果支持智能决策。这些技术的发展和应用为构建智能化的国土空间规划决策系统提供了可能。 智能决策系统的构建和应用不仅提升了国土空间规划的技术水平,还促进了规划决策的科学化、智能化和精准化。在未来的国土空间规划领域,智能决策系统有望成为推动规划工作发展的重要驱动力。 地理信息大数据驱动的国土空间规划智能决策系统的研究,不仅对我国当前的国土空间规划工作具有重要的指导意义,也为未来相关技术的发展和应用提供了理论基础和实践案例。随着技术的进一步发展和完善,智能决策系统有望在更广阔的范围内得到应用,助力国土空间规划工作更好地服务于经济社会发展和生态环境保护。
2025-09-21 11:31:11 59KB 人工智能 AI
1
智能算法,作为提升汽车NVH性能优化的关键技术,已经逐渐成为研究的热点。NVH指的是汽车的噪声(Noise)、振动(Vibration)以及声振粗糙度(Harshness),是影响汽车乘坐舒适性和产品质量的重要因素。智能算法在这一领域的应用,主要涉及对汽车内部振动和噪声源的识别、预测汽车振动传播路径、抑制不希望的振动以及优化隔声隔振结构设计等多个方面。 在汽车NVH性能优化中,智能算法能够模拟和分析复杂的物理过程,提供更为精确的设计方案,从而在产品开发初期就可降低NVH问题的发生概率。传统NVH优化方法包括经验设计、仿真分析和试验验证,但这些方法存在局限性,如成本高昂、耗时长、难以处理高复杂度问题等。相比之下,智能算法,特别是机器学习和人工智能大模型,以其快速性、高效性和智能化特点,在NVH优化领域展现出巨大潜力。 智能算法在汽车NVH性能优化中的研究进展主要体现在以下几个方面: 1. 智能算法的理论基础和分类,这包括智能算法的基本定义、分类以及其处理NVH问题的优势分析。 2. 传统汽车NVH优化方法的回顾及其局限性,如经验设计方法的回顾、仿真分析的应用、试验验证与参数调整的讨论。 3. 智能算法在汽车振动特性优化中的应用,包括振源识别与定位技术、振动传播路径预测模型、针对性振动抑制策略的生成。 4. 智能算法在汽车噪声特性优化中的应用,如噪声源识别与特性分析、噪声传播建模与仿真、隔声隔振结构的优化设计。 5. 基于智能算法的汽车NVH综合性能优化,这涉及振动与噪声耦合机理的智能建模、多目标NVH性能协同优化方法、整车NVH性能的智能预测与评估。 6. 在智能算法应用于NVH优化中遇到的挑战及未来展望,包括数据质量与算法选择问题、计算效率与实时性要求、多学科交叉融合的需求等。 智能算法在汽车NVH优化中的应用展现出广阔的前景,但同时也面临着多方面的挑战。未来的研究需要深入探索智能算法在NVH优化中的实际应用效果,以及如何克服计算资源和实时性等问题,更好地将智能算法与传统NVH优化方法相融合,从而实现汽车NVH性能的全面提升。
2025-09-18 17:16:18 116KB 人工智能 AI
1
Agent AI在多模态交互方面展现出巨大潜力,通过整合各类技术,在游戏、机器人、医疗等领域广泛应用。如游戏中优化NPC行为,机器人领域实现多模态操作等。然而,其面临数据隐私、偏见、可解释性等问题。未来,需加强技术创新,改进算法提升性能,解决伦理问题,推动跨领域融合,以实现Agent AI的持续发展,为社会带来更多积极影响。本文只对关键信息做了阐述,大佬的文档最好还是阅读下原文,原文信息更丰富。看不懂英文的小伙伴也不用着急,关注公众号后回复 李飞飞 获取第一手英文翻译稿,爽到飞起。 Agent AI,即智能体人工智能,是当前人工智能研究领域中的一个热门话题。它主要涉及到能够理解多种不同类型输入信息,并做出相应回应的系统。Agent AI的核心在于多模态交互能力,即不仅能够处理视觉、听觉等多种感官信息,还能理解语言、文本等抽象数据。这种交互模式是实现通用人工智能(AGI)的关键途径之一。 在游戏开发中,Agent AI被用来优化非玩家角色(NPC)的行为。它可以使NPC更加智能,能够根据玩家的行为和周围环境做出更加自然和复杂的反应。在机器人领域,Agent AI使得机器人可以借助视觉、听觉等多种感知方式,执行更复杂的操作任务。在医疗领域,Agent AI正被探索用于提高诊断准确性和治疗方案的个性化。 然而,Agent AI的发展并非没有挑战。数据隐私问题、模型偏见、结果的可解释性都是需要解决的关键难题。数据隐私问题需要确保在使用用户数据时,不会侵犯其隐私权;模型偏见是指AI系统可能会因为训练数据的偏差而产生不公平或错误的判断;而结果的可解释性则是指我们需要理解AI作出决策的原因,以增加人们对AI系统的信任。 为了推动Agent AI的进一步发展,必须强化技术创新,并改进算法以提升性能。同时,还需要解决伦理问题,确保AI的发展不会对社会产生负面影响。跨领域融合也是一个重要的发展方向,它将推动不同学科间的知识和技术交流,从而实现Agent AI的全面进步。 本文对Agent AI的研究和应用进行了综述,特别是对于其在多模态交互方面的探索。通过整合生成AI和多个独立数据源,Agent AI已经展现出了在物理世界中进行多模态理解的能力,并能在跨现实数据上进行训练,从而在物理世界和虚拟世界中都能得到应用。在这一过程中,Agent AI系统的总体概述被展示为能够在多个不同领域和应用中感知和行动,作为通向通用人工智能(AGI)的一条途径。 未来,Agent AI有望在虚拟现实或模拟场景中创建出能够与人类进行交互的智能体。这不仅将为人们带来全新的交互体验,也可能对整个人工智能领域的发展产生深远影响。通过本文的阐述,我们可以看到Agent AI的发展前景广阔,但同时也需要注意它在伦理和技术上所面临的挑战。 重要的是,我们应该意识到Agent AI不仅仅是技术的进步,更是人工智能在日常生活中应用的一个重要标志。随着技术的不断成熟,Agent AI可能会成为我们生活中不可或缺的一部分。因此,无论是在技术、伦理还是社会层面,我们都应做好充分的准备,以应对这一变革的到来。Agent AI的探索之旅充满希望,同时也充满了挑战,它需要我们每一个人的参与和支持。只有这样,我们才能确保技术的进步能够造福社会,而不仅仅是技术本身的发展。
2025-09-17 08:32:38 30.93MB Agent
1
### 美团AI文章合集:机器学习与AI应用概览 #### 一、美团AI概况 **美团点评**作为一家全球领先的生活服务平台,在过去一年中为2800多个城区县提供超过200种不同类型的消费服务,日均订单量超过了2200万单,年度交易总额达到了3600亿元人民币。这一系列令人瞩目的成绩背后,离不开其强大的技术支撑。美团点评拥有一个近7000人的技术团队,覆盖了从前端到后台、系统到算法等多个技术领域。 #### 二、美团AI技术体系 美团点评的技术体系十分完备,包括但不限于: - **云计算平台**:基于主流开源技术和自主研发技术构建,能够高效支持大规模数据处理需求。 - **大数据平台**:用于存储、管理和分析海量数据,为业务决策提供强有力的数据支持。 - **人工智能与机器学习平台**:涵盖了机器学习模型训练、部署和维护等各个环节,支持各类业务场景下的智能化升级。 - **运维与安全保障系统**:确保系统的稳定运行和数据安全,有效应对潜在的安全威胁。 - **终端软硬件系统**:为消费者和商家提供便捷的服务体验,实现线上线下无缝连接。 #### 三、美团AI应用案例 美团点评在其官方博客和技术文章精选集中分享了多项AI应用场景和技术实践,以下是一些典型的应用案例: 1. **深度学习在推荐平台排序中的应用**:通过深度学习技术改进推荐系统的排序算法,提高推荐精度和用户体验。 2. **模型优化问题的探讨**:针对机器学习模型的训练过程中常见的优化难题,提出解决方案并分享实践经验。 3. **在线特征系统生产调度与数据存取技术**:介绍如何利用AI技术提升特征系统的效率和准确性,以及相关的数据管理和存取技术。 4. **即时配送的ETA预测与订单分配策略**:利用大数据和机器学习技术预测送达时间,并优化订单分配流程,提高配送效率。 5. **用户画像实践**:通过收集和分析用户行为数据,构建精细的用户画像,为个性化推荐提供依据。 6. **旅游推荐系统的演进**:分享了旅游推荐系统的发展历程和最新进展,包括如何利用AI技术改进搜索召回策略。 7. **广告场景化定向排序机制**:探讨如何通过AI技术实现更精准的广告定向,提高广告效果。 #### 四、大数据与数据分析实践 美团点评还在大数据处理和智能分析方面积累了丰富的经验,具体包括: 1. **数据平台融合实践**:介绍了如何将不同的数据源整合到统一的数据平台上,以支持更高效的数据分析和业务决策。 2. **酒旅数据仓库建设**:分享了酒旅业务数据仓库的建设和优化过程,以及如何通过数据驱动提升业务绩效。 3. **流计算框架Flink与Storm的性能对比**:对比了两种主流流计算框架的优缺点,为企业选择合适的技术栈提供参考。 4. **智能投放系统之场景分析最佳实践**:讨论了如何根据不同的业务场景设计最优的广告投放策略,以最大化ROI。 5. **指标逻辑树的最佳实践**:介绍了一种用于数据分析的方法论——指标逻辑树,帮助企业更好地理解和优化业务流程。 6. **酒旅BI报表工具平台开发实践**:分享了如何开发一套高效的BI报表工具平台,以支持酒旅业务的数据分析需求。 通过上述案例可以看出,美团点评不仅在技术创新方面取得了显著成就,而且也在不断努力将这些技术成果应用于实际业务场景中,从而不断提升用户体验和服务效率。随着AI和大数据技术的不断发展,未来美团点评还将继续探索新的应用场景,推动行业进步。
2025-09-16 10:07:38 22.24MB 机器学习 AI
1