Simd:使用以下SIMD的C ++图像处理和机器学习库:SSE,SSE2,SSE3,SSSE3,SSE4.1,SSE4.2,AVX,AVX2,AVX-512,VMX(Altivec)和VSX(Power7),NEON臂
2021-11-01 10:35:16 3.93MB c-plus-plus machine-learning arm neural-network
1
单图深度估计Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields-附件资源
2021-11-01 09:37:39 106B
1
tensorflow下用LSTM网络进行时间序列预测,实时多变量预测和对于未来数据的单变量预测,代码中做了详尽的中文解释,并对一些参数进行了注释和说明。
2021-10-31 16:19:04 6.58MB LSTM 时间序列 Tensorflow 机器学习
1
类激活图 通过可视化对于这些模型的预测(或视觉解释)“重要”的输入区域,可以使基于卷积神经网络(CNN)的模型更加透明的技术。 使用VinBigData图像和Inception架构的示例
1
美国运输模式 US-Transporation是我们数据集的名称,其中包含来自13个以上用户的传感器数据。 鉴于文献中缺乏针对TMD的通用基准,我们通过一个简单的Android应用程序收集了一大套属于不同主题的度量。 我们公开发布数据集,以便其他研究人员可以从中受益,以进行进一步的改进和提高研究的可重复性。 我们的数据集是由不同性别,年龄和职业的人构建的。 此外,我们不对应用程序的使用施加任何限制,因此,每个用户都记录自己习惯执行该操作的数据,以便评估现实世界的状况。 除了可下载的数据集之外,在此页面中,您还可以找到Python的代码以提取特征,并建立机器学习模型以进行预测。 您可以在找到有关数据集和我们的工作的更多信息。 如果对您的研究有所帮助,请在您的出版物中引用以下论文: @article{carpineti18, Author = {Claudia Carpineti,
1
RegNet 介绍 在这项工作中,我们提出了一种通过学习方法来解决非刚性图像配准的方法,而不是通过对预定义的相异性度量进行迭代优化来解决。 我们设计了卷积神经网络(CNN)架构,与所有其他工作相反,该架构直接从一对输入图像中估计位移矢量场(DVF)。 提议的RegNet使用大量的人工生成的DVF进行了训练,没有明确定义相异性度量标准,并且以多种比例集成了图像内容,从而为网络配备了上下文信息。 在测试时,与当前的迭代方法相反,非刚性配准是一次完成的。 引文 [1] , , , , , , 和 ,2019年。。 arXiv预印本arXiv:1908.10235。 [2] , , , , IvanaIšgum和Marius Staring ,2017年9月。 使用多尺度3D卷积神经网络进行非刚性图像配准。 在医学图像计算和计算机辅助干预国际会议上(第232-239页)。 湛
1
Neural Networks and DeepLearning - Michael Nielsen 中文 PDF 带书签 Neural Networks and DeepLearning - Michael Nielsen 中文 PDF 带书签 Neural Networks and DeepLearning - Michael Nielsen 中文 PDF 带书签
2021-10-29 09:28:30 3.24MB 神经网络 深度学习
1
尼尔森神经网络和深度学习 迈克尔尼尔森(Michael Nielsen)的书-。 在线书的源代码在,而相关的许可证在文件LICENSE.mnielsen 。
2021-10-29 09:22:12 41KB Python
1
金字塔形卷积 这是我们的论文的PyTorch实现。 (请注意,这是ImageNet上图像识别的代码。有关语义图像分割/解析的信息,请参见以下存储库: : ) 在ImageNet上训练的模型可以在找到。 PyConv能够提供比基线更高的识别能力(有关详细信息,请参见)。 ImageNet上的准确性(使用默认培训设置): 网络 50层 101层 152层 ResNet 76.12%( ) 78.00%( ) 78.45%( ) PyConvHGResNet 78.48 %( ) 79.22 %( ) 79.36 %( ) PyConvResNet 77.88 %( ) 79.01 %( ) 79.52 %( ) 使用更复杂的训练设置(例如,使用附加数据增强(CutMix),将bach大小增加到1024,学习率0.4,余弦调度程序超过300个纪元以及使用混合精度来加
1
组织病理学检测 创建了一种算法,以识别从较大的数字病理扫描中获取的小图像斑块中的转移癌。 该比赛的数据是对PatchCamelyon(PCam)基准数据集的略微修改版本 动机 乳腺癌的临床诊断最好通过活检来实现。 病理学家通过在显微镜下手动检查组织切片来进行诊断。 但是,传统的诊断系统需要专业知识,只有经验丰富的病理学家才能准确地确定肿瘤组织。 当前,在印度的各个农村地区,人们无法获得良好的医疗保健设施。 另外,农村地区没有新的先进设备,因此甚至有可能无法正确诊断患者。 农村地区医疗状况不佳的主要原因之一是缺乏经验丰富的医生。 数据集 该研究使用的数据集是PatchCamelyon(PCam)[21],[22]的略微修改版本。由于其概率抽样,原始PCam数据集包含重复图像,但是此版本不包含重复图像。 该数据集是开源的,可以从( )下载。 数据集包含超过220K张RGB图像,尺寸为96x
1