深度学习网络模型 MobileNet系列v1 ~ v3网络详解以及pytorch代码复现 1、DW卷积与普通卷积计算量对比 DW与PW计算量 普通卷积计算量 计算量对比 2、MobileNet V1 MobileNet V1网络结构 MobileNet V1网络结构代码 3、MobileNet V2 倒残差结构模块 倒残差模块代码 MobileNet V2详细网络结构 MobileNet V2网络结构代码 4、MobileNet V3 创新点 MobileNet V3详细网络结构 注意力机制SE模块代码 InvertedResidual模块代码 整体代码
2024-04-11 12:04:25 504.75MB 网络 网络 pytorch pytorch
1
(1)RKNN的c++代码推理 (2)推理平台RK3588 (3)推理模型mobilenet
2024-04-10 15:44:36 122.43MB
1
视网膜面火炬版 由于机密性,它不是我模型的最佳版本 感谢Alvin Yang( ) 这是68个地标检测的分支,预先训练的模型位于./out中 进行96个地标检测(请参阅其他分支) 该模型还预测了地标的被遮挡部分,如果不希望它们出现,可以将其隐藏。 基于RetinaFace 当前模型 mobileNet V1 + FPN +上下文模块+回归器1.6MB CPU〜10FPS GPU 50FPU 火车:(请参考dataloader.py更改文件位置) python3 train.py -train该模型使用LS3D-W数据集,或将您的数据集更改为demo.pt/ demo.jpg(68 * 2张量)的格式 使用本地摄像头: python3 video_detect.py(需要删除所有'cuda()',并在CPU本地运行) 评估模型: python3 train.py -train错
2024-03-14 19:40:41 3.29MB Python
1
mobilenet 下载 mobilenet 下载
2023-11-08 11:53:40 8.97MB mobilenet
1
使用pytorch写的mobilenet v2代码,详细注释,可以生成训练集和测试集的损失和准确率的折线图,详细注释了神经网络的搭建过程
2023-09-10 20:02:26 8.06MB pytorch pytorch mobilenetv2
1
包含了对图像的识别、电脑固定区域的识别以及电脑摄像头或者视频文件的real time 识别
2023-04-25 22:08:07 46.28MB 人工智能 模式识别
1
PyTorch中带有MobileNet后端的RetinaFace推理代码 步骤1: cd cython python setup.py build_ext --inplace 第2步: python inference.py 评估(宽屏): Easy Val AP:0.8872715908531869 中值AP:0.8663337842229522 硬值AP:0.771796729363941 试验结果: 参考: @inproceedings {deng2019retinaface,标题= {RetinaFace:野外单阶段密集脸定位},作者= {Deng,Jiankang和Guo,Jia和Yuxiang,Zhou和Jinke Yu和Irene Kotsia和Zafeiriou,Stefanos},书名= { arxiv},年份= {2019}}
2023-04-08 00:47:54 9.38MB pytorch retinaface mobilenet-backend Python
1
Pytorch SSD预训练模型mobilenet-v1-ssd-mp-0_675.pth
2022-12-12 16:32:48 33.91MB PytorchSSD
1
(fanqiang)英伟达官方下的,亲测有用
2022-11-28 12:25:38 34.2MB jetsoninference jetsonnano
1
MobileNet-V2 pytorch0.3.0代码,很好用希望对大家有帮助!
2022-11-01 17:01:25 77KB pytorch MobileNet V2
1