标题中的“mobilenet_v1_1.0_224_quant_and_labels”指的是一个针对MobileNet V1模型的特定版本,它经过了量化处理,适用于低功耗设备,同时包含了224像素输入大小的预训练权重。描述中的内容与标题相同,暗示这是一个与图像分类相关的模型资源包。 MobileNet是Google开发的一种深度学习模型,主要用于计算机视觉任务,如图像分类、物体检测等。V1是它的第一代版本,设计上注重轻量化和高效性,使得它能在移动设备上运行。1.0表示网络的宽度乘积因子为1,意味着模型没有进行任何宽度缩减,保持了原始设计的完整结构。224是输入图像的分辨率,这在很多预训练模型中是一个常见的标准尺寸。 "quant"表示这个模型进行了量化处理。在深度学习中,量化是一种优化技术,通过将模型参数从浮点数转换为整数,从而减少内存占用和计算需求,这对于资源有限的设备(如智能手机或嵌入式系统)尤其重要。通常,量化会牺牲一些精度,但在许多应用中,这种牺牲是可以接受的。 压缩包内的两个文件: 1. "mobilenet_v1_1.0_224_quant.tflite" 是一个TensorFlow Lite(TFLite)格式的模型文件。TFLite是TensorFlow的一个轻量级版本,专门用于部署到移动和嵌入式设备。此文件包含了已经训练好的MobileNet V1模型,可以用于设备上的推理。量化后的TFLite模型可以在保持相对高准确度的同时,实现更快的推理速度和更低的内存消耗。 2. "labels_mobilenet_quant_v1_224.txt" 文件通常包含模型所能识别的类别标签列表。在图像分类任务中,当模型预测出图像的特征向量后,会根据这些标签来确定图像的类别。例如,这个文件可能列出了1000个ImageNet类别的名称,对应模型的1000个输出节点。 总结来说,这个压缩包提供了一个优化过的MobileNet V1模型,适用于224x224像素的图像输入,并且已经转化为适合在低功耗设备上运行的TFLite格式。配合标签文件,用户可以直接使用这个模型进行图像分类任务,例如在移动应用中识别不同的物体。在机器学习领域,这样的模型资源对于开发人员来说是非常有价值的,因为他们可以直接在自己的项目中集成预训练模型,而无需从头训练一个庞大的网络。
2025-10-30 21:14:15 2.93MB 机器学习
1
使用keras库写的MobileNet网络实现猫狗分类,使用kaggle的Dog-vs-Cat数据集_Dog-Cat-Classification-keras-
2025-03-15 15:25:26 16KB
1
深度学习网络模型 MobileNet系列v1 ~ v3网络详解以及pytorch代码复现 1、DW卷积与普通卷积计算量对比 DW与PW计算量 普通卷积计算量 计算量对比 2、MobileNet V1 MobileNet V1网络结构 MobileNet V1网络结构代码 3、MobileNet V2 倒残差结构模块 倒残差模块代码 MobileNet V2详细网络结构 MobileNet V2网络结构代码 4、MobileNet V3 创新点 MobileNet V3详细网络结构 注意力机制SE模块代码 InvertedResidual模块代码 整体代码
2024-04-11 12:04:25 504.75MB 网络 网络 pytorch pytorch
1
(1)RKNN的c++代码推理 (2)推理平台RK3588 (3)推理模型mobilenet
2024-04-10 15:44:36 122.43MB
1
视网膜面火炬版 由于机密性,它不是我模型的最佳版本 感谢Alvin Yang( ) 这是68个地标检测的分支,预先训练的模型位于./out中 进行96个地标检测(请参阅其他分支) 该模型还预测了地标的被遮挡部分,如果不希望它们出现,可以将其隐藏。 基于RetinaFace 当前模型 mobileNet V1 + FPN +上下文模块+回归器1.6MB CPU〜10FPS GPU 50FPU 火车:(请参考dataloader.py更改文件位置) python3 train.py -train该模型使用LS3D-W数据集,或将您的数据集更改为demo.pt/ demo.jpg(68 * 2张量)的格式 使用本地摄像头: python3 video_detect.py(需要删除所有'cuda()',并在CPU本地运行) 评估模型: python3 train.py -train错
2024-03-14 19:40:41 3.29MB Python
1
mobilenet 下载 mobilenet 下载
2023-11-08 11:53:40 8.97MB mobilenet
1
使用pytorch写的mobilenet v2代码,详细注释,可以生成训练集和测试集的损失和准确率的折线图,详细注释了神经网络的搭建过程
2023-09-10 20:02:26 8.06MB pytorch pytorch mobilenetv2
1
包含了对图像的识别、电脑固定区域的识别以及电脑摄像头或者视频文件的real time 识别
2023-04-25 22:08:07 46.28MB 人工智能 模式识别
1
PyTorch中带有MobileNet后端的RetinaFace推理代码 步骤1: cd cython python setup.py build_ext --inplace 第2步: python inference.py 评估(宽屏): Easy Val AP:0.8872715908531869 中值AP:0.8663337842229522 硬值AP:0.771796729363941 试验结果: 参考: @inproceedings {deng2019retinaface,标题= {RetinaFace:野外单阶段密集脸定位},作者= {Deng,Jiankang和Guo,Jia和Yuxiang,Zhou和Jinke Yu和Irene Kotsia和Zafeiriou,Stefanos},书名= { arxiv},年份= {2019}}
2023-04-08 00:47:54 9.38MB pytorch retinaface mobilenet-backend Python
1
Pytorch SSD预训练模型mobilenet-v1-ssd-mp-0_675.pth
2022-12-12 16:32:48 33.91MB PytorchSSD
1