在本项目中,“Volve-field-machine-learning”是一个专注于利用机器学习技术分析北海Volve油田的公开数据集的实践案例。2018年,挪威石油公司Equinor出于促进学术和工业研究的目的,发布了这个丰富的数据集,为油气田的研究带来了新的机遇。这个数据集包含了与地下地质特征、油田运营及生产相关的各种信息,为研究人员提供了深入理解油气田开采过程的宝贵资源。 Volve油田的数据集涵盖了多个方面,包括地质模型、地震数据、井测数据、生产历史等。这些数据可以用于训练和验证机器学习模型,以解决诸如储量估计、产量预测、故障检测等油气田管理中的关键问题。通过机器学习,我们可以挖掘出隐藏在大量复杂数据中的模式和规律,从而优化生产决策和提高效率。 在探索这个数据集时,Jupyter Notebook被用作主要的分析工具。Jupyter Notebook是一款交互式计算环境,支持编写和运行Python代码,非常适合数据预处理、可视化和建模工作。用户可以在同一个环境中进行数据探索、编写模型和展示结果,使得整个分析过程更为直观和透明。 在这个项目中,可能涉及的机器学习方法包括监督学习、无监督学习以及深度学习。例如,监督学习可以用来建立产量预测模型,其中历史产量作为目标变量,而地质特征、井参数等作为输入变量;无监督学习如聚类分析可以用于识别相似的井或地质区域,以便进行更精细化的管理;深度学习模型如卷积神经网络(CNN)可以处理地震数据,提取地下结构的特征。 在Volve-field-machine-learning-main文件夹中,很可能包含了一系列的Jupyter Notebook文件,每个文件对应一个特定的分析任务或机器学习模型。这些文件将详细记录数据清洗、特征工程、模型选择、训练过程以及结果评估的步骤。通过阅读和复现这些Notebook,读者可以学习到如何将机器学习应用于实际的油气田数据,并从中获得对数据驱动决策的理解。 这个项目为油气行业的研究者和工程师提供了一个实战平台,通过运用机器学习技术,他们能够深入理解和优化Volve油田的运营,同时也为其他类似油田的数据分析提供了参考。随着大数据和人工智能技术的不断发展,这种数据驱动的决策方式将在未来的能源行业中发挥越来越重要的作用。
2024-09-10 15:22:37 7.93MB JupyterNotebook
1
这部书是一本以实践为主兼顾理论的机器学习好书,豆瓣高分,本电子书质量很好
2024-08-25 18:40:04 47.53MB TensorFlow Python
1
Machine Learning。学习交流使用勿做商业用途
2024-07-16 15:29:47 2.59MB 机器学习
1
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
机器学习问题解决指南 机器学习是一门复杂的学科,需要掌握多种技术和概念。Approaching (Almost) Any Machine Learning Problem是一本旨在帮助读者掌握机器学习问题解决方法的书籍。这本书涵盖了机器学习的基本概念、模型选择、数据预处理、特征工程、模型评估等多方面的知识点。 机器学习基本概念 机器学习是一种人工智能技术,通过对数据的分析和学习,可以对未知数据进行预测和分类。机器学习可以分为监督学习、非监督学习和半监督学习三种类型。监督学习是指在给定标签的数据集上训练模型,以便对新数据进行预测。非监督学习是指在没有标签的数据集上训练模型,以便发现隐含的模式。半监督学习是指在部分标签的数据集上训练模型,以便对新数据进行预测。 模型选择 机器学习模型的选择取决于问题的类型和数据特征。常见的机器学习模型有决策树、随机森林、支持向量机、神经网络等。决策树是一种基于树形结构的分类模型,适合处理小规模数据集。随机森林是一种集成学习模型,通过组合多棵决策树以提高预测准确性。支持向量机是一种基于核函数的分类模型,适合处理高维数据。神经网络是一种基于人工神经网络的分类模型,适合处理大规模数据集。 数据预处理 数据预处理是机器学习的重要步骤,旨在将原始数据转换为模型可以处理的格式。常见的数据预处理方法包括数据清洗、数据变换、特征选择等。数据清洗是指去除无关数据和缺失值,提高数据质量。数据变换是指将数据转换为适合模型的格式。特征选择是指选择最相关的特征,以提高模型的预测准确性。 特征工程 特征工程是指对原始数据特征的提取和转换,以提高模型的预测准确性。常见的特征工程方法包括特征提取、特征选择、特征降维等。特征提取是指将原始数据转换为有意义的特征。特征选择是指选择最相关的特征,以提高模型的预测准确性。特征降维是指降低数据维度,以提高模型的计算效率。 模型评估 模型评估是指对模型的预测结果进行评估,以验证模型的泛化能力。常见的模型评估方法包括准确率、召回率、F1-score、ROC曲线等。准确率是指模型正确预测的样本数占总样本数的比例。召回率是指模型正确预测的正样本数占总正样本数的比例。F1-score是指模型的准确率和召回率的调和平均值。ROC曲线是指模型的真阳性率与假阳性率的曲线。 Approaching (Almost) Any Machine Learning Problem是一本涵盖机器学习基本概念、模型选择、数据预处理、特征工程、模型评估等多方面知识点的书籍,旨在帮助读者掌握机器学习问题解决方法。
2024-06-21 15:45:57 7.98MB 机器学习
1
目录 介绍 该存储库表示在开发用于材料科学中的机器学习的图形网络方面的工作。 这项工作仍在进行中,到目前为止,我们开发的模型仅基于我们的最大努力。 我们欢迎任何人使用我们的代码和数据来构建和测试模型的努力,所有这些代码和数据都是公开的。 也欢迎任何意见或建议(请在Github Issues页面上发帖。) 使用我们的预训练MEGNet模型进行晶体特性预测的Web应用程序可从。 MEGNet框架 MatErials图形网络(MEGNet)是DeepMind图形网络[1]的实现,用于材料科学中的通用机器学习。 我们已经证明了它在分子和晶体的广泛属性中实现非常低的预测误差方面所取得的成功(请参阅 [
2024-06-06 11:20:22 39.25MB machine-learning deep-learning tensorflow keras
1
svm支持向量机python代码 机器学习语义分割-随机森林,支持向量机,GBC Machine learning semantic segmentation - Random Forest, SVM, GBC.zip
2024-05-21 18:39:18 4.69MB 机器学习 随机森林 支持向量机
1
Phishing_Website_Detection:该项目基于使用随机森林分类公式检测网络钓鱼欺诈性网站。 使用Python编程语言和Django框架实现
2024-05-20 11:25:47 53KB python security data-science machine-learning
1
Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
2024-05-04 00:04:03 15.27MB 贝叶斯
1
使用Python的动手深度学习算法 这是Packt发布的《 的代码库。 通过使用TensorFlow实施深度学习算法和广泛的数学知识 这本书是关于什么的? 深度学习是AI领域最受欢迎的领域之一,可让您开发各种复杂程度不同的多层模型。 本书涵盖以下激动人心的功能: 实施基础到高级的深度学习算法 掌握深度学习算法背后的数学 熟悉梯度下降及其变体,例如AMSGrad,AdaDelta,Adam和Nadam 实施循环网络,例如RNN,LSTM,GRU和seq2seq模型 了解机器如何使用CNN和胶囊网络解释图像 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 该代码将如下所示: J_plus = forward_prop(x, weights_plus) J_minus = forward_prop(x, weights_minus) 这是您需要的本
2024-04-10 09:45:51 127.09MB python machine-learning deep-learning
1