**标题解析:** "Mnist-MLP" 指的是使用Mnist数据集训练一个多层感知器(Multi-Layer Perceptron, MLP)模型。Mnist是机器学习领域非常经典的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本。 **描述分析:** 描述中提到,作者在项目中实现了一个多层感知器。多层感知器是一种前馈神经网络,通常由输入层、隐藏层和输出层组成,其中隐藏层可能包含多个节点。此外,依赖于Keras库来构建和训练模型。Keras是一个高级的神经网络API,它可以在TensorFlow等后端上运行,简化了深度学习模型的构建和训练过程。使用Jupyter Notebook进行实现,意味着代码和解释是结合在一起的,便于理解和复现。 **标签解析:** 1. **mnist** - 这是该项目所用的数据集,用于手写数字识别。 2. **convolutional-neural-networks (CNN)** - 虽然标题和描述中没有明确提到CNN,但这个标签可能暗示在项目中可能会比较MLP与卷积神经网络(CNN)的表现,因为CNN在图像识别任务中非常有效。 3. **mlp** - 多层感知器,是本项目的核心模型。 4. **JupyterNotebook** - 项目代码和文档是在Jupyter Notebook环境中编写的,便于交互式编程和数据分析。 **压缩包子文件的文件名称列表:** "Mnist-MLP-master" 通常表示这是一个项目仓库的主分支,很可能包含了项目的源代码、数据、README文件等资源,用户可以下载并按照指导运行和理解项目。 **详细知识点:** 1. **多层感知器(MLP)**:MLP是一种包含至少一个隐藏层的前馈神经网络,每个神经元都与下一层的所有神经元连接。通过非线性激活函数(如ReLU或Sigmoid),MLP能够学习复杂的非线性关系。 2. **Mnist数据集**:Mnist包含28x28像素的灰度手写数字图像,每个图像对应0到9的数字标签。它是机器学习初学者和研究人员常用的入门数据集。 3. **Keras**:Keras是一个高级的神经网络API,可以快速构建和训练模型,支持多种后端(如TensorFlow、Theano等)。Keras提供了简洁的接口,使得编写深度学习模型变得简单。 4. **Jupyter Notebook**:Jupyter Notebook是数据科学家常用的工具,它提供了一个交互式的环境,可以将代码、解释、图表和输出整合在一个文档中,方便分享和复现研究。 5. **深度学习流程**:项目可能涵盖了数据预处理(如归一化、reshape)、模型构建(定义层结构和激活函数)、模型编译(损失函数和优化器选择)、训练(如批量梯度下降)、验证和评估等步骤。 6. **比较MLP与CNN**:尽管描述中未提及CNN,但项目可能涉及比较MLP和CNN在Mnist数据上的性能,因为CNN在图像识别中通常优于MLP,尤其是对图像中的局部特征有较好的捕捉能力。 7. **模型调优**:项目可能也包括了超参数调整(如学习率、隐藏层数、节点数量等)以提高模型性能。 通过这些知识点,你可以深入理解多层感知器在图像分类任务中的应用,以及如何使用Keras进行模型开发,并通过Jupyter Notebook进行实验记录和结果展示。
1
压实、采摘和种植 (CPG) 这是 CPG 的官方 Pytorch 实现——一种用于对象分类的终身学习算法。 有关CPG的详细信息,请参阅论文《 ( , ) 该代码仅供学术研究使用。 如需商业用途,请联系教授( )。 基准测试 施引论文 如果这些代码有助于您的研究,请引用以下论文: @inproceedings{hung2019compacting, title={Compacting, Picking and Growing for Unforgetting Continual Learning}, author={Hung, Ching-Yi and Tu, Cheng-Hao and Wu, Cheng-En and Chen, Chien-Hung and Chan, Yi-Ming and Chen, Chu-Song}, booktitle={Advance
1
子神经网络 NeurIPS 2020论文存储库: 作者: , ,, 要使用SubGNN,请执行以下操作: 安装环境 准备数据 在config.py修改PROJECT_ROOT 修改适当的config.json文件 训练和评估SubGNN 安装环境 我们提供了一个yml文件,其中包含SubGNN的必要软件包。 一旦安装了 ,就可以创建如下环境: conda env create --file SubGNN.yml 准备数据 通过(1)下载我们提供的数据集或按照prepare_dataset文件夹README中的步骤来为SubGNN准备数据,(2)生成合成数据集或(3)格式化您自己的数据。 真实数据集:我们将发布四个新的真实数据集:HPO-NEURO,HPO-METAB,PPI-BP和EM-USER。 您可以 从Dropbox下载这些文件。 您应该解压缩文件夹并将config.py的P
2025-10-21 11:52:49 87KB embeddings graph-neural-networks Python
1
特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件请填写资源的Tag 特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件特易通 A18 写频软件请填写资源的Tag特易通 A18 写频软件特易通 A18 写频软件
2025-07-22 15:51:58 896KB recurrent neural networks
1
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key
2025-04-15 10:21:45 20.36MB 机器学习 硬件优化
1
压缩AI CompressAI( compress-ay )是用于端到端压缩研究的PyTorch库和评估平台。 CompressAI当前提供: 用于基于深度学习的数据压缩的自定义操作,层和模型 官方库的部分端口 预训练的端到端压缩模型,用于学习图像压缩 评估脚本,将学习的模型与经典图像/视频压缩编解码器进行比较 注意:多GPU支持目前处于试验阶段。 安装 CompressAI仅支持python 3.6+(当前对PyTorch的支持<3.9)和PyTorch 1.4+。还需要C ++ 17编译器,最新版本的pip(19.0+)和常见的python软件包(有关完整列表,请参见setup.py )。 要开始并安装CompressAI,请在运行以下命令: git clone https://github.com/InterDigitalInc/CompressAI compressai cd
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
语音活动检测项目 关键字:Python,TensorFlow,深度学习,时间序列分类 目录 1.11.21.3 2.12.2 5.15.2将5.35.4 去做 资源 1.安装 该项目旨在: Ubuntu的20.04 的Python 3.7.3 TensorFlow 1.15.4 $ cd /path/to/project/ $ git clone https://github.com/filippogiruzzi/voice_activity_detection.git $ cd voice_activity_detection/ 1.1基本安装 $ pip3 install -r requirements.txt $ pip3 install -e . 1.2虚拟环境安装 1.3 Docker安装 构建docker镜像: $ sudo make build (这可能
1
gnina(发音为NEE-na)是一个分子对接程序,具有使用卷积神经网络对配体进行评分和优化的综合支持。 这是的叉子,是的叉子。 帮助 请。 提供一个示例Colab笔记本,其中显示了如何使用gnina。 引文 如果您发现gnina有用,请引用我们的论文: GNINA 1.0:分子对接与深度学习(主要应用引用) 阿McNutt,P Francoeur,R Aggarwal,T Masuda,R Meli,M Ragoza,J Sunseri,DR Koes。 ChemRxiv,2021年 卷积神经网络的蛋白质配体评分(主要方法引用) M Ragoza,J Hochuli,E Idrobo,J Sunseri,DR Koes。 J.化学。 Inf。 模型,2017 基于原子网格的卷积神经网络的配体姿态优化M Ragoza,L Turner和DR Koes。 分子与材料的机器学习NIP
1
作者 项目 文献资料 建置状态 代码质量 覆盖范围 NumPyNet Linux / MacOS : Windows : 编码: 编码节拍: 纯NumPy中的神经网络-NumPyNet 在神经网络模型的纯Numpy中实现。 NumPyNet支持语法非常接近Keras之一,但它使用只写了Numpy功能:这种方式很轻,快速安装和使用/修改。 理论 先决条件 安装 效率 用法 贡献 参考 作者 执照 致谢 引文 概述 NumPyNet是作为研究神经网络模型的教育框架而诞生的。 编写该指南的目的是平衡代码的可读性和计算性能,并提供大量文档,以更好地理解每个脚本的功能。 该库是用纯Python编写的,唯一使用的外部库是Numpy (科学研究的基本软件包)。 尽管所有常见的库都通过广泛的文档进行了关联,但对于新用户而言,通常很难在其中引用的许多超链接和论文中四处移动。 NumPyNet试
1