SRResCycGAN:“用于真实图像超高分辨率的深度循环生成对抗性残差卷积网络”的代码回购(ECCVW AIM2020)-源码

上传者: 42157166 | 上传时间: 2021-10-20 22:22:20 | 文件大小: 45.21MB | 文件类型: -
用于真实图像超分辨率的深循环生成对抗性残差卷积网络(SRResCycGAN) 网络的官方PyTorch实现,如论文。 这项工作以高x4放大系数参加了挑战赛道3。 抽象的 最近基于深度学习的单图像超分辨率(SISR)方法主要是在干净的数据域中训练其模型,其中低分辨率(LR)和高分辨率(HR)图像来自无噪声设置(相同域)到双三次降采样假设。 但是,这种降级过程在实际环境中不可用。 我们考虑到深度循环网络结构,以保持LR和HR数据分布之间的域一致性,这是受CycleGAN在图像到图像翻译应用程序中最近成功的启发。 通过以端对端方式从LR到HR域转换的生成对抗网络(GAN)框架进行训练,我们提出了超分辨率残留循环生成对抗网络(SRResCycGAN)。 我们在定量和定性实验中证明了我们提出的方法,该方法很好地推广到了真实图像的超分辨率,并且很容易部署到移动/嵌入式设备中。 此外,我们在AIM 2

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明