PRML pattern recognition and machine learning (最完整,包括学习笔记,习题答案,中文版,英文版电子档)
2021-09-10 17:52:23 18.77MB 模式识别 机器学习
1
加入我们 什么是合成数据? 合成数据是不是从现实世界事件中收集的人为生成的数据。它在不包含任何可识别信息的情况下复制了真实数据的统计组成部分,从而确保了个人的隐私。 为什么要合成数据? 合成数据可用于许多应用程序: 隐私 消除偏见 天平数据集 增强数据集 ydata合成 该存储库包含与用于生成综合数据(特别是常规表格数据和时间序列)的对抗网络有关的材料。它包含一组使用Tensorflow 2.0开发的不同GAN架构。其中包括一个示例Jupyter Notebook,以说明如何使用不同的体系结构。 快速开始 pip install ydata-synthetic 例子 在这里,您可以找到用于综合表格数据的程序包和模型的用法示例。 信用欺诈数据集 库存数据集 项目资源 合成GitHub: : 综合数据社区松弛: 在此存储库中,您可以找到以下GAN架构: 表格数据 顺序数据
2021-09-09 23:32:09 427KB machine-learning timeseries deep-learning python3
1
检查分支以查看更多项目
2021-09-09 13:48:05 8.47MB
1
酒评指标 在这个项目中,我为在线葡萄酒销售商构建了葡萄酒评级预测指标。 该Wine预测变量旨在显示使用wine_dataset良好的预测是可能的。 葡萄酒评级是80到100之间的一个分数,代表了葡萄酒的质量。 使用当前的功能集,随机森林分类器及其调整的参数葡萄酒等级预测器可以预测均方误差为4.9的葡萄酒质量。 该指标表明,针对客户的全自动机器学习解决方案在生产中是可行且有效的。 该预测器运行带有Docker和Luigi任务的机器学习管道。 因此,它可以在装有docker和docker-compose的任何机器上运行。 机器学习管道包括以下步骤: 下载资料 制作数据集 清理数据 提取功能
2021-09-09 10:29:27 27.54MB python docker machine-learning scikit-learn
1
计算机大牛Bishop出的《Pattern Recognition And Machine Learning》是机器学习的经典教材,文档还包含An Introduction to Statistical Learning with Applications in R,ython Machine Learning。文档非常详细(PRML读书会合集打印版、PRML笔记-Notes-on-Pattern-Recognition-and-Machine-Learning、PRML_Translation、PRML_Chinese_vision、PRML——Solutions+to+the+Exercises、prml-slides-1.pptx)
2021-09-09 09:13:15 64.54MB bubble
1
sklearn-rvm:相关矢量机(RVM)的sklearn样式实现
1
TinyML实现可识别自来水龙头的声音,一旦听到声音,便会触发蜂鸣器+ LED计时器。
2021-09-08 15:47:27 1.73MB artificial intelligence machine learning
1
The availability of affordable compute power enabled by Moore’s law has been enabling rapid advances in Machine Learning solutions and driving adoption across diverse segments of the industry. The ability to learn complex models underlying the real-world processes from observed (training) data through systemic, easy-to-apply Machine Learning solution stacks has been of tremendous attraction to businesses to harness meaningful business value. The appeal and opportunities of Machine Learning have resulted in the availability of many resources—books, tutorials, online training, and courses for solution developers, analysts, engineers, and scientists to learn the algorithms and implement platforms and methodologies. It is not uncommon for someone just starting out to get overwhelmed by the abundance of the material. In addition, not following a structured workflow might not yield consistent and relevant results with Machine Learning solutions.
2021-09-08 14:11:20 15.39MB python 机器学习
1
This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas. Table of Contents Chapter 1 Introduction Chapter 2 Complex Networks Chapter 3 Machine Learning Chapter 4 Network Construction Techniques Chapter 5 Network-Based Supervised Le
2021-09-08 13:25:24 8.46MB Complex Networks Machine Learning
1
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow(2nd edition)
2021-09-08 09:21:37 27.57MB Machine Learning
1