matlab多元参数非线性回归模型代码-Coursera-Machine-Learning-and-Practice:吴安德(AndrewNg

上传者: 38574410 | 上传时间: 2021-09-12 03:17:27 | 文件大小: 27.17MB | 文件类型: ZIP
matlab多元参数非线性回归模型代码Coursera机器学习与实践 记录了的研究,但添加了一些加强学习的实践。 目录 第1周 介绍 Machine Learning definition :如果某计算机程序在T上的性能(由P衡量)随着经验E的提高而提高,则该计算机程序可以从经验E中学习一些任务T和一些性能指标P。 Supervised learning :“给出正确答案”,例如回归,分类... Unsupervised learning :“未给出正确答案”,例如聚类,梯度下降... 一变量线性回归 Model representation Cost function Gradient Descent 线性代数复习 简单线性回归的Python实践 预测房屋价格 我们有以下数据集: 条目号 平方英尺 价格 1个 150 6450 2个 200 7450 3 250 8450 4 300 9450 5 350 11450 6 400 15450 7 600 18450 通过线性回归,我们知道我们必须在数据内找到线性,才能获得θ0和θ1。我们的假设方程式如下所示: 在哪里: hθ(x)是特

文件下载

资源详情

[{"title":"( 97 个子文件 27.17MB ) matlab多元参数非线性回归模型代码-Coursera-Machine-Learning-and-Practice:吴安德(AndrewNg","children":[{"title":"Coursera-Machine-Learning-and-Practice-master","children":[{"title":"Week4","children":[{"title":"Neural networks.pdf <span style='color:#111;'> 4.97MB </span>","children":null,"spread":false},{"title":"machine-learning-ex3","children":[{"title":"ex3","children":[{"title":"displayData.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"ex3data1.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"sigmoid.m <span style='color:#111;'> 137B </span>","children":null,"spread":false},{"title":"fmincg.m <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false},{"title":"ex3_nn.m <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"submitWithConfiguration.m <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"makeValidFieldName.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"jsonlab","children":[{"title":"loadjson.m <span style='color:#111;'> 18.29KB </span>","children":null,"spread":false},{"title":"saveubjson.m <span style='color:#111;'> 15.75KB </span>","children":null,"spread":false},{"title":"savejson.m <span style='color:#111;'> 17.05KB </span>","children":null,"spread":false},{"title":"ChangeLog.txt <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"AUTHORS.txt <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"LICENSE_BSD.txt <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 18.92KB </span>","children":null,"spread":false},{"title":"loadubjson.m <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false},{"title":"jsonopt.m <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"mergestruct.m <span style='color:#111;'> 771B </span>","children":null,"spread":false},{"title":"varargin2struct.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"token.mat <span style='color:#111;'> 234B </span>","children":null,"spread":false},{"title":"lrCostFunction.m <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"ex3.m <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"ex3weights.mat <span style='color:#111;'> 77.73KB </span>","children":null,"spread":false},{"title":"oneVsAll.m <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"predictOneVsAll.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"predict.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":false},{"title":"ex3.pdf <span style='color:#111;'> 286.82KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Week3","children":[{"title":"logistic regression classification.pdf <span style='color:#111;'> 2.12MB </span>","children":null,"spread":false},{"title":"machine-learning-ex2","children":[{"title":"ex2","children":[{"title":"octave-workspace <span style='color:#111;'> 43B </span>","children":null,"spread":false},{"title":"sigmoid.m <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"mapFeature.m <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"plotData.m <span style='color:#111;'> 860B </span>","children":null,"spread":false},{"title":"plotDecisionBoundary.m <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"ex2_reg.m <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"submitWithConfiguration.m <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"makeValidFieldName.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"jsonlab","children":[{"title":"loadjson.m <span style='color:#111;'> 18.29KB </span>","children":null,"spread":false},{"title":"saveubjson.m <span style='color:#111;'> 15.75KB </span>","children":null,"spread":false},{"title":"savejson.m <span style='color:#111;'> 17.05KB </span>","children":null,"spread":false},{"title":"ChangeLog.txt <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"AUTHORS.txt <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"LICENSE_BSD.txt <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 18.92KB </span>","children":null,"spread":false},{"title":"loadubjson.m <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false},{"title":"jsonopt.m <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"mergestruct.m <span style='color:#111;'> 771B </span>","children":null,"spread":false},{"title":"varargin2struct.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"ex2data1.txt <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"token.mat <span style='color:#111;'> 234B </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"costFunctionReg.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"ex2data2.txt <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"costFunction.m <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"ex2.m <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"predict.m <span style='color:#111;'> 760B </span>","children":null,"spread":false}],"spread":false},{"title":"ex2.pdf <span style='color:#111;'> 228.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"Regularization.pdf <span style='color:#111;'> 3.23MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 22.22KB </span>","children":null,"spread":false},{"title":"Week1","children":[{"title":"scipts","children":[{"title":"house_price","children":[{"title":"LinearRegression.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"input_data.csv <span style='color:#111;'> 108B </span>","children":null,"spread":false}],"spread":true},{"title":"TV_viewers","children":[{"title":"LinearRegression.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"input_data.csv <span style='color:#111;'> 201B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Introduction_Lecture1.pdf <span style='color:#111;'> 3.30MB </span>","children":null,"spread":false},{"title":"Linear Algebra.pdf <span style='color:#111;'> 1.80MB </span>","children":null,"spread":false},{"title":"Linear Regression with one variable.pdf <span style='color:#111;'> 2.88MB </span>","children":null,"spread":false}],"spread":true},{"title":"Week2","children":[{"title":"ex1","children":[{"title":"scripts","children":[{"title":"octave-workspace <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"featureNormalize.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"plotData.m <span style='color:#111;'> 979B </span>","children":null,"spread":false},{"title":"ex1_multi.m <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"lib","children":[{"title":"submitWithConfiguration.m <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"makeValidFieldName.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"jsonlab","children":[{"title":"loadjson.m <span style='color:#111;'> 18.29KB </span>","children":null,"spread":false},{"title":"saveubjson.m <span style='color:#111;'> 15.75KB </span>","children":null,"spread":false},{"title":"savejson.m <span style='color:#111;'> 17.05KB </span>","children":null,"spread":false},{"title":"ChangeLog.txt <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"AUTHORS.txt <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"LICENSE_BSD.txt <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"README.txt <span style='color:#111;'> 18.92KB </span>","children":null,"spread":false},{"title":"loadubjson.m <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false},{"title":"jsonopt.m <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"mergestruct.m <span style='color:#111;'> 771B </span>","children":null,"spread":false},{"title":"varargin2struct.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"gradientDescent.m <span style='color:#111;'> 963B </span>","children":null,"spread":false},{"title":"normalEqn.m <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"token.mat <span style='color:#111;'> 234B </span>","children":null,"spread":false},{"title":"submit.m <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"ex1data2.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"gradientDescentMulti.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"ex1data1.txt <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"warmUpExercise.m <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"computeCostMulti.m <span style='color:#111;'> 753B </span>","children":null,"spread":false},{"title":"computeCost.m <span style='color:#111;'> 770B </span>","children":null,"spread":false},{"title":"ex1.m <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false}],"spread":false},{"title":"ex1.pdf <span style='color:#111;'> 478.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"Octave Tutorial.pdf <span style='color:#111;'> 242.37KB </span>","children":null,"spread":false},{"title":"Linear Regression with Multiple Variables.pdf <span style='color:#111;'> 1.70MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明