A Versatile Camera Calibration Techniaue for High-Accuracy 3D Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses
2021-11-19 21:41:46 3.21MB Camera Calibration Machine Vision
1
PyTorch中的Seq2Seq 这是用于在训练序列到序列模型的完整套件。 它由几个模型和代码组成,可以训练和推断使用它们。 使用此代码,您可以训练: 神经机器翻译(NMT)模型 语言模型 图像到字幕的生成 跳过思维的句子表示 和更多... 安装 git clone --recursive https://github.com/eladhoffer/seq2seq.pytorch cd seq2seq.pytorch; python setup.py develop 楷模 当前可用的模型: 简单的Seq2Seq递归模型 带注意解码器的递归Seq2Seq (GNMT)递归模型 变形金刚-来自的仅关注模型 数据集 当前可用的数据集: WMT16 WMT17 OpenSubtitles 2016 COCO图片标题 可以使用3种可用的分割方法对所有数据集进行标记: 基于字符的细
1
NBA数据分析 签出已。 概要 传球:根据球员传球数据创建图表,随机游走以模拟前端完成的控球 职位:根据赛季统计数据使用KNearestNeighbors分类器将NBA球员分类为职位 风格:根据比赛类型的频率确定NBA球队和球员的风格 等级:使用高级统计数据的k-means聚类算法将NBA球员分为多个等级 数据 所有数据均摘自 入门 可以使用存储库目录中的pip install -r requirements.txt安装所有所需的库。 使用python setup.py install软件包。 除非您具有必需的数据库URI,否则将软件包config.py文件更改为具有data_source
2021-11-19 17:06:22 326KB d3 nba machine-learning statistics
1
主要邻里聚集 在PyTorch,DGL和PyTorch Geometric中实现图网的主要邻域聚合 。 概述 我们提供PyTorch,DGL和PyTorch Geometric框架中的主要邻域聚合(PNA)的实现,以及用于生成和运行多任务基准的脚本,用于运行实际基准的脚本,灵活的PyTorch GNN框架以及其他实现用于比较的模型。 该存储库的组织方式如下: models包含: pytorch包含在PyTorch中实现的各种GNN模型: 聚合器,缩放器和PNA层( pna )的实现 可以与任何类型的图卷积一起使用的灵活GNN框架( gnn_framework.py ) 本文中用于比较的其他GNN模型的实现,即GCN,GAT,GIN和MPNN dgl包含通过实现的PNA模型:聚合器,缩放器和层。 pytorch_geometric包含通过实现的PNA模型:聚合器,缩放器和图层。
1
qscript:一种简单的脚本语言
1
斯坦福自动驾驶汽车守则 进入DARPA大挑战的汽车的斯坦福密码 斯坦福自动驾驶汽车的软件基础架构 参见 最初在Sourceforge上找到
1
使用机器学习识别欺诈(项目概述) 项目目标 在2000年,安然(Enron)是美国最大的公司之一。 到2002年,由于广泛的公司欺诈行为,该公司破产了。 在最终的联邦调查中,大量的通常是机密信息被输入到公共记录中,包括成千上万的电子邮件和高级管理人员的详细财务数据。 这些数据已与手工生成的欺诈案件中感兴趣的人的名单相结合,这意味着被起诉,与政府达成和解或辩诉交易或作证以换取起诉豁免权的个人。 这些数据为146名员工创建了21个要素的数据集。 该项目的范围是创建一种算法,该算法能够识别可能实施欺诈的安然员工。 为了实现此目标,部署了探索性数据分析和机器学习以从异常值中清除数据集,识别新参数并将
1
蒙古BERT型号 该存储库包含由 , 和训练的经过预训练的蒙古模型。 特别感谢提供了5个TPU。 该存储库基于以下开源项目: ,和 。 楷模 词汇量为32000的用作文本标记器。 您可以使用蒙版语言模型笔记本 测试经过预训练的模型可以预测蒙面蒙语单词的效果如何。 BERT-Base: 和 BERT-Large: HuggingFace 未装箱的BERT-Base: TensorFlow检查点和PyTorch模型 未装箱的BERT-Large: HuggingFace 盒装BERT-Base 下载TensorFlow检查点或PyTorch模型。 评估结果: global_step = 4000000 loss = 1.3476765 masked_lm_accuracy = 0.7069192 masked_lm_loss = 1.2822781 next_sentence_a
1
一组用于在可视节点编辑器中统一设计AI的工具。 用于: 行为树。 有限状态机。 实现自己的AI图。 通往v0.2.0的道路 如果您有兴趣在development分支中进行更改,那么我正在更新此存储库。 也可以随时与您有关如何改进这些工具的任何建议不一致。 发生了什么变化? 关注点分离。 仅将xNode用作序列化和行为构建器工具。 不对运行时执行的方式做任何假设。 交互行为而不是字典的黑板。 使用新的复合节点Active Selector和Active Sequencer进行行为树检修。 其他可能的变化 AI行为的标准化版本。 基于实用程序的行为树。 一些样品。 主要特点 行为树
2021-11-19 10:10:32 66KB unity finite-state-machine behaviour-tree xnode
1
matlab +人口增长代码乳腺癌分类器(Logistic回归) 此代码可帮助您使用Logistic回归对恶性和良性肿瘤进行分类 Sourcerer 规范要求 示例代码在Matlab中(或更高版本可以使用)。 您可以安装Conda for python,它可以解析机器学习的所有依赖关系。 描述 Logistic回归是为方法核心使用的函数Logistic函数而命名的。 统计学家开发了逻辑函数,也称为S形函数,用于描述生态中人口增长的特性,该特性Swift增长并在环境的承载能力方面达到最大化。 这是一条S形曲线,可以采用任何实数值并将其映射为0到1之间的一个值,但永远不能精确地位于这些极限值处。 1 /(1 + e ^-值) 想要查询更多的信息, 一些注意事项 数据集-UCI-ML 我仅使用32个功能中的2个进行分类。 工作实例 执行 要运行代码,请输入run breast_cancer.m run breast_cancer.m Python实现 数据集-UCI-ML 我使用了30种功能进行分类 我使用的是1 =良性和2 =恶性,而不是0 =良性和1 =恶性 准确度〜92% 执行 要运行
2021-11-19 09:33:24 21.75MB 系统开源
1