THUMT:神经机器翻译的开源工具包 内容 介绍 机器翻译是一种自然语言处理任务,旨在自动使用计算机翻译自然语言。 最近几年见证了端到端神经机器翻译的飞速发展,这已成为实际MT系统中的新主流方法。 THUMT是由开发的用于神经机器翻译的开源工具包。 THUMT的网站是: ://thumt.thunlp.org/。 在线演示 THUMT的在线演示可从。 涉及的语言包括古代汉语,阿拉伯语,中文,英语,法语,德语,印尼语,日语,葡萄牙语,俄语和西班牙语。 实作 THUMT当前具有三个主要实现: :与开发的新实现。 它实现了Transformer模型( Transformer )( )。
1
neural-machine-translation
2023-03-02 16:02:49 29KB Python
1
OpenNMT-py:开源神经机器翻译 OpenNMT-py是项目的版本, 项目是一个开源(MIT)神经机器翻译框架。 它被设计为易于研究的,可以尝试翻译,摘要,形态和许多其他领域的新思想。 一些公司已经证明该代码可以投入生产。 我们喜欢捐款! 请查看带有标签的问题。 提出问题之前,请确保您已阅读要求和文档示例。 除非有错误,否则请使用或提出问题。 公告-OpenNMT-py 2.0 我们很高兴宣布即将发布OpenNMT-py v2.0。 此版本背后的主要思想是-几乎完整地改造了数据加载管道。 引入了新的“动态”范式,允许对数据进行动态转换。 这具有一些优点,其中包括: 删除或
1
matlab代码左移神经机器翻译(seq2seq)教程 作者:Thang Luong,Eugene Brevdo,赵瑞(,) 此版本的教程要求。 要使用稳定的TensorFlow版本,请考虑其他分支,例如。 如果您使用此代码库进行研究,请引用。 介绍 序列到序列(seq2seq)模型(,)在各种任务(例如机器翻译,语音识别和文本摘要)中都取得了巨大的成功。 本教程为读者提供了对seq2seq模型的全面理解,并展示了如何从头开始构建具有竞争力的seq2seq模型。 我们专注于神经机器翻译(NMT)的任务,这是带有wild的seq2seq模型的第一个测试平台。 所包含的代码轻巧,高质量,可立即投入生产,并结合了最新的研究思路。 我们通过以下方式实现这一目标: 使用最新的解码器/注意包装器,TensorFlow 1.2数据迭代器 结合我们在构建递归模型和seq2seq模型方面的专业知识 提供有关构建最佳NMT模型和复制的提示和技巧。 我们认为,提供人们可以轻松复制的基准非常重要。 结果,我们提供了完整的实验结果,并在以下公开可用的数据集上对我们的模型进行了预训练: 小型:由ET提供的TED演
2022-06-15 20:56:44 832KB 系统开源
1
使用文档级上下文改进变压器翻译模型 内容 介绍 这是我们工作的实现,将Transformer扩展为集成文档级上下文[ ]。 该实现在 用法 注意:用法不是用户友好的。 以后可能会改善。 训练标准的变压器模型,请参考的用户手册。 假设model_baseline / model.ckpt-30000在验证集上表现最佳。 使用以下命令生成虚拟的改进的Transformer模型: python THUMT/thumt/bin/trainer_ctx.py --inputs [source corpus] [target corpus] \ --context [context corpus] \ --vocabulary [source
1
神经机器翻译 这是使用Encoder-Decoder机制以及Attention机制(( )于2016年引入的神经机器翻译的一种实现。Encoder-decoder体系结构通常使用一种编码器,该编码器对将源句子转换成固定长度的向量,解码器根据该向量生成翻译。 本文推测使用固定长度向量是提高此基本编码器-解码器体系结构性能的瓶颈,并建议通过允许模型自动(软)搜索源语句的一部分来扩展此范围。与预测目标词相关,而不必明确地将这些部分形成为一个困难的部分。 编码器: seq2seq网络的编码器是RNN,它为输入句子中的每个单词输出一些值。 对于每个输入字,编码器输出一个向量和一个隐藏状态,并将隐藏状态用于下一个输入字。 解码器: 在最简单的seq2seq解码器中,我们仅使用编码器的最后一个输出。 最后的输出有时称为上下文向量,因为它对整个序列中的上下文进行编码。 该上下文向量用作解码器的初始隐
2022-03-28 11:05:27 5.82MB encoder decoder attention mt
1
在这个全球化的时代,很可能会遇到与我们使用不同语言进行交流的人或社区。 为了承认由此引起的问题,我们正在开发机器翻译系统。 Google LLC 等多家知名组织的开发人员一直致力于使用机器学习算法(如人工神经网络 (ANN))引入算法来支持机器翻译,以促进机器翻译。 在这方面已经开发了几种神经机器翻译,但另一方面,循环神经网络(RNN)在该领域并没有太大发展。 在我们的工作中,我们试图将 RNN 引入机器翻译领域,以承认 RNN 优于 ANN 的优势。 结果显示了 RNN 如何能够以适当的准确度执行机器翻译。
2021-12-30 15:54:31 428KB Neural Machine Translation
1
PyTorch中的Seq2Seq 这是用于在训练序列到序列模型的完整套件。 它由几个模型和代码组成,可以训练和推断使用它们。 使用此代码,您可以训练: 神经机器翻译(NMT)模型 语言模型 图像到字幕的生成 跳过思维的句子表示 和更多... 安装 git clone --recursive https://github.com/eladhoffer/seq2seq.pytorch cd seq2seq.pytorch; python setup.py develop 楷模 当前可用的模型: 简单的Seq2Seq递归模型 带注意解码器的递归Seq2Seq (GNMT)递归模型 变形金刚-来自的仅关注模型 数据集 当前可用的数据集: WMT16 WMT17 OpenSubtitles 2016 COCO图片标题 可以使用3种可用的分割方法对所有数据集进行标记: 基于字符的细
1
神经机器翻译模型,用于将阿塞拜疆语翻译成英语。 在这个项目中,我发现了如何开发一种神经机器翻译系统来将阿塞拜疆语翻译成英语。 我使用阿塞拜疆语到英语术语的数据集作为语言学习卡片的基础。 该数据集可从ManyThings.org网站获得,其示例摘自Tatoeba项目。 清除文本数据后,就可以进行建模和定义了。 我已经在这个问题上使用了编解码器LSTM模型。 在这种架构中,输入序列由称为编码器的前端模型编码,然后由称为解码器的后端模型逐字解码。 使用有效的Adam方法对模型进行训练,以实现随机梯度下降,并最大程度地减少了分类损失函数,因为我们将预测问题构造为多类分类。 还创建了模型图,为模型配置提供了另一个视角。 接下来,对模型进行训练。 在现代CPU硬件上,每个时期大约需要30秒。 无需GPU。 然后,我们可以对数据集中的每个源短语重复此操作,并将预测结果与英语中的预期目标短语进行比
2021-09-25 21:42:45 1.55MB tensorflow neural-machine-translation Python
1