输入土壤数据可以估计碳含量。这是一个代码库,用于运行模拟和分析以估算土壤有机碳(SOC)。函数包含模拟和估计SOC以及计算给定各种参数和成本的最佳采样和测量设计的关键函数。复合材料分析包含对Spertus正在发表的论文“估算土壤有机碳储量的最佳取样和测量”的最佳取样和测量方案的分析。
2026-01-08 19:30:18 177KB
1
JMP Start Statistics A Guide to Statistics and Data Analysis Using JMP(6th) 英文无水印原版pdf 第6版 pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2025-10-19 16:55:15 10.42MB Start Statistics Guide Statistics
1
Meteostat Python软件包 Meteostat Python库提供了用于访问开放的天气和气候数据的简单API。 从不同的公共部门收集历史观测和统计数据,其中大多数是政府部门。 数据来源包括国家气象服务,例如国家海洋和大气管理局(NOAA)和德国的国家气象服务(DWD)。 安装 Meteostat Python包可通过: pip install meteostat Meteostat需要Python 3.5或更高版本。 如果您想可视化数据,请也安装Matplotlib。 文献资料 Meteostat Python库分为多个类,这些类提供对实际数据的访问。 该涵盖了库的所有方面: 例子 让我们绘制不列颠哥伦比亚省温哥华的2018年温度数据: # Import Meteostat library and dependencies from datetime import da
2025-09-14 13:30:55 31KB weather data-science statistics climate
1
根据提供的文件信息,本书《Probability, Statistics, and Random Processes for Engineers 4e》是一本针对工程学科学生在概率论、统计学以及随机过程方面提供深入教育的教材。本书由Henry Stark与John W. Woods共同编写,是该领域的权威之作。下面将对本书涉及的核心知识点进行详细的阐述。 ### 一、概率论基础 #### 1.1 随机实验与样本空间 - **定义**: 随机实验是指结果不能事先确定的实验,而所有可能结果的集合称为样本空间。 - **例子**: 如抛硬币实验中的样本空间为{正面, 反面}。 #### 1.2 事件与概率 - **事件**: 是样本空间的一个子集。 - **概率**: 表示事件发生的可能性大小。 - **古典概率**: 当所有可能的结果出现的机会相等时,某个事件的概率可以用该事件包含的样本点数目除以总的样本点数目来计算。 #### 1.3 条件概率与独立性 - **条件概率**: 给定事件B已经发生的情况下,事件A发生的概率。 - **独立事件**: 如果两个事件的发生互不影响,则称这两个事件是独立的。 ### 二、随机变量及其分布 #### 2.1 随机变量的概念 - **定义**: 随机变量是样本空间到实数集的映射函数。 - **分类**: 包括离散型随机变量和连续型随机变量。 #### 2.2 分布函数与密度函数 - **分布函数**: 描述随机变量取值小于等于某个特定值的概率。 - **密度函数**: 对于连续型随机变量,其概率可以通过密度函数下的面积来表示。 #### 2.3 数学期望与方差 - **数学期望**: 表示随机变量长期平均取值的趋势。 - **方差**: 表示随机变量取值相对于数学期望的波动程度。 ### 三、多维随机变量 #### 3.1 联合分布与边缘分布 - **联合分布**: 描述多个随机变量同时取值的概率分布。 - **边缘分布**: 从联合分布中推导出单个随机变量的分布。 #### 3.2 相关性与独立性 - **相关系数**: 用来衡量两个随机变量之间的线性关系强度。 - **独立性**: 如果两个随机变量的联合分布等于各自边缘分布的乘积,则它们是独立的。 ### 四、大数定律与中心极限定理 #### 4.1 大数定律 - **弱大数定律**: 随着独立同分布的随机变量序列的长度增加,样本均值趋近于总体均值。 - **强大数定律**: 几乎必然地,随着样本数量的增加,样本均值趋近于总体均值。 #### 4.2 中心极限定理 - **定理**: 对于任何具有有限方差的独立同分布随机变量序列,当样本量足够大时,样本均值的分布趋向于正态分布。 ### 五、统计推断 #### 5.1 参数估计 - **方法**: 包括矩估计法、极大似然估计法等。 - **评价标准**: 如无偏性、有效性等。 #### 5.2 假设检验 - **基本思想**: 根据样本信息判断原假设是否成立。 - **步骤**: 包括提出原假设与备择假设、选择显著性水平、构造检验统计量等。 ### 六、随机过程 #### 6.1 定义与分类 - **定义**: 随时间变化的一系列随机变量的集合。 - **分类**: 如平稳过程、马尔科夫过程等。 #### 6.2 特性分析 - **自相关函数**: 描述随机过程中不同时间点上取值的相关程度。 - **功率谱密度**: 描述随机过程能量或功率在频率域上的分布情况。 通过上述内容可以看出,《Probability, Statistics, and Random Processes for Engineers 4e》一书全面覆盖了工程师在概率论、统计学以及随机过程方面的基础知识与高级理论,对于理解这些概念并将其应用于实际工程问题具有重要的指导意义。
2025-09-13 03:25:23 7.53MB
1
这是一本关于astroML的书,全名为Statistics, Data Mining, and Machine Learning in Astronomy,用python写的Machine Learning for Astrophysics。
2025-07-26 21:45:14 102.53MB 机械学习 python
1
以下是使用等待统计信息分析SQLServer性能并排除故障的实用指南。学习如何准确地确定查询运行缓慢的原因。测量每个瓶颈所消耗的时间,以便您可以首先集中精力进行最大的改进。此版本被更新,以涵盖查询存储中等待统计信息的分析、CXCONSUMER等待事件以及SQLServer 2019年的最新情况。无论您是刚刚开始等待统计,还是已经熟悉这些统计信息,这本书提供了关于等待统计信息是如何生成的以及它们对SQL Server实例的性能意味着什么的更深入的理解。PRO SQL Server 2019等待统计不仅限于最常见的等待类型,还包括更复杂和更具性能威胁的等待类型。您将了解每个查询等待统计信息和基于会话的等待统计信息,以及它们各自可以帮助您解决的问题类型。不同的等待类型按其影响区域分类,包括CPU、IO、Lock等。本书提供了明确的示例,帮助您了解具体的等待时间增加或减少的原因和方式,以及它们如何影响SQLServer的性能。读完这本书后,你将不希望没有等待统计数据提供的有价值的信息,这些信息是关于您应该将有限的调优时间用于最大限度地提高性能和对您的业务的价值。
2025-06-05 11:06:52 19.3MB SQL Server SQL Server
1
用wait statistics分析诊断 SQL Server 性能。找出查询慢的原因。对每个瓶颈计时以专注于做出最大的改进。这本书已经更新,讲述在Query Store分析wait statistics , CXCONSUMER wait 事件, 以及SQL Server 2019最新进展.
2025-06-05 10:59:51 16.78MB sql-server
1
Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce, Andrew Bruce English | ISBN: 1491952962 | 2016 A key component of data science is statistics and machine learning, but only a small proportion of data scientists are actually trained as statisticians. This concise guide illustrates how to apply statistical concepts essential to data science, with advice on how to avoid their misuse. Many courses and books teach basic statistics, but rarely from a data science perspective. And while many data science resources incorporate statistical methods, they typically lack a deep statistical perspective. This quick reference book bridges that gap in an accessible, readable format.
2024-05-17 09:38:25 3.16MB Statistics Data Scientists
1
Statistics on Special Manifolds,统计学的书 ,经典
2024-02-16 07:40:59 5.12MB Statistics Special Manifolds
1
Density Estimation for Statistics and Data Analysis, Silverman著, 1986年版,核密度估计教材
2024-01-09 16:20:52 5.05MB Density Estimation
1