用于软件定义的网络路由优化的深度强化学习方法 :乔治·(Giorgio Stampa),玛塔·阿里亚斯(Marta Arias),大卫·桑切斯·查尔斯(David Sanchez-Charles),维克多·芒特斯·穆勒(Victor Muntes-Mulero),阿尔伯特·卡贝洛斯(Albert Cabellos) 在本文中,我们设计和评估了可以优化路由的深度强化学习代理。 我们的代理会自动适应当前的流量状况,并提出量身定制的配置,以尽量减少网络延迟。 实验显示非常有前途的性能。 而且,相对于传统的优化算法,该方法具有重要的操作优势。 代码和数据集。 Keras和Deep确定性策略梯度可
1
mhtml文件,请在chrome下观看,效果很好; 1分,诸位评论下就回来了
2021-12-04 15:56:35 50.26MB machine learning deep learning
1
Tensorflow实现“ CT结肠造影中具有有限数据集的息肉候选者检测的3D卷积神经网络框架”,Chen Yizhi,2018年,EMBC。 版权保留。 免费提供各种用于研究目的的复制和修订。 在Tensorflow1.4,Python2.7,Ubuntu16.04下 文件结构 您应该参考Configuration.py以全面了解程序和数据库的文件结构。 数据输入 为了避免训练时加载完整尺寸的CT卷所需的大量时间,我们将首先裁剪该卷,然后将它们组织为单独的POLYP DATASET。 像Configuration.py中一样准备CT结肠造影数据。 在文本文件中列出所有CT卷的目录。 在Configuation.py中修改几个重要的目录变量。 运行dataBase.py以构造信息文件和息肉数据集。 训练 “ cd version2”和“ python train.py --fold
1
Deep Learning and Parallel Computing Environment for Bioengineering Systems
2021-12-04 12:10:46 24.72MB DeepLearning
1
keras-rcnn:用于基于区域的卷积神经网络(RCNN)的Keras软件包
2021-12-03 23:59:35 1.48MB theano deep-learning cntk tensorflow
1
matlab代码abs 多任务深度网络 基于多任务深度学习的医学图像语义分割方法 (EMBC 2019) (MICCAIW - MLMI 2019) 依赖关系 套餐 火炬 TensorboardX OpenCV 麻木的 tqdm 可以在requirements.txt文件中找到所用包的详尽列表。 使用以下命令安装相同的: conda create --name < env > --file requirements.txt 预处理 轮廓和距离图是预先计算的,可以从二进制掩码中获得。 可以在此处找到示例 matlab 代码: 轮廓: 距离: 目录结构 训练和测试文件夹应包含以下结构: ├── contour |-- 1.png |-- 2.png ... ├── dist_contour |--1.mat |--2.mat ... ├── dist_mask |-- 1.mat |-- 2.mat ... ├── dist_signed |-- 1.mat |-- 2.mat ... ├── image |-- 1.jpg |-- 2.jpg ... └── mask |-- 1.png
2021-12-03 17:14:25 900KB 系统开源
1
TensorFlow-ENet ENet的TensorFlow实现。 该模型已在CamVid数据集上进行了测试,并带有从英国剑桥拍摄的街道场景。 有关此数据集的更多信息,请访问: : 。 要求: TensorFlow> = r1.2 可视化 请注意,如果网络未将gif加载在一起,则gif可能不同步。 您可以刷新页面以同步查看它们。 测试数据集输出 TensorBoard可视化 在根目录上执行tensorboard --logdir=log来监视您的训练,并在训练模型时对照地面真实情况和原始图像观看分段输出形式。 内容 码 enet.py:ENet模型定义,包括参数范围。 train
1
OReilly.Deep.Learning.2017
2021-12-03 09:05:40 14.54MB 深度学习
1
深度解析 RT-Thread 操作系统 简介 这个仓库的内容包括 RT-Thread 操作系统功能实现的深度解析。 从实现的功能,数据结构,设计方法的角度来讲解 RT-Thread 操作系统。 内容 RT-Thread 内核对象模型 RT-Thread 文件系统
2021-12-02 21:00:26 1.65MB datastructures rt-thread
1
PyTorch中用于图像分类的深度主动学习工具包 这是用编写的用于图像分类的深度主动学习的代码库。 我想强调的是,该工具包只是最初由Prateek Munjal等人通过电子邮件与我共享的工具包的轻量级衍生产品。 论文“使用神经网络实现鲁棒和可再现的主动学习”的作者,请。 介绍 该存储库的目标是为深度主动学习提供一个简单而灵活的代码库。 它旨在支持快速实施和评估研究思路。 我们还提供了大量基准结果(即将推出)。 该代码库当前仅支持单机单gpu培训。 我们将很快将其扩展到由PyTorch分布式软件包提供支持的单机多GPU培训。 使用工具箱 有关简要的安装说明和基本用法示例,请参见 。 支持的主动学习方法 不确定性抽样 最不信任 最低保证金 最大熵 深度贝叶斯主动学习(DBAL)[1] 贝叶斯主动学习的分歧(BALD)[1] 多样性抽样 核心组(贪婪)[2] 变式对抗主动学习(VAAL)
1