通过svm cnn knn对高光谱数据集PaviaU进行分类(matlab)

上传者: 37402233 | 上传时间: 2019-12-21 21:37:48 | 文件大小: 35.42MB | 文件类型: rar
本资源主要通过matlab对Paviau高光谱数据集进行分类,使用了pca、kpca、lda三种数据降维方法以及svm、knn、cnn三种数据分类算法。

文件下载

资源详情

[{"title":"( 35 个子文件 35.42MB ) 通过svm cnn knn对高光谱数据集PaviaU进行分类(matlab)","children":[{"title":"ZKL_classifier_final","children":[{"title":"train_y.mat <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"getpixel.m <span style='color:#111;'> 613B </span>","children":null,"spread":false},{"title":"cnnsetup.m <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"knn_hughes_test.m <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"train_x.mat <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"main_cnn_untrain.m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"trainednet.mat <span style='color:#111;'> 771.46KB </span>","children":null,"spread":false},{"title":"flipall.m <span style='color:#111;'> 86B </span>","children":null,"spread":false},{"title":"cnn_start.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"cnnapplygrads.m <span style='color:#111;'> 640B </span>","children":null,"spread":false},{"title":"cnntest.m <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"cnnbp.m <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"cnntrain.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"lda.m <span style='color:#111;'> 2.98KB </span>","children":null,"spread":false},{"title":"cnn_test.m <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"程序说明.txt <span style='color:#111;'> 401B </span>","children":null,"spread":false},{"title":"sigm.m <span style='color:#111;'> 54B </span>","children":null,"spread":false},{"title":"data_undone.m <span style='color:#111;'> 137B </span>","children":null,"spread":false},{"title":"kpcaFordata.m <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"test_y.mat <span style='color:#111;'> 250B </span>","children":null,"spread":false},{"title":"PaviaU.mat <span style='color:#111;'> 33.19MB </span>","children":null,"spread":false},{"title":"test_x.mat <span style='color:#111;'> 249.34KB </span>","children":null,"spread":false},{"title":"data_pca_done.m <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"cnnff.m <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"lda_test.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"knn_test.m <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"cnnnumgradcheck.m <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"PCA2.m <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"PaviaU_gt.mat <span style='color:#111;'> 10.75KB </span>","children":null,"spread":false},{"title":"KNN.m <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"main_final.m <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"pca_test.m <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"expand.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"kpca_test.m <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"data_lda_done.m <span style='color:#111;'> 417B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • 襄阳漫仕 :
    这文件怎么使用的啊?
    2021-01-31
  • qq_46542607 :
    文件不好,不要下载
    2020-06-23
  • 将来的将来 :
    总体感觉还可以了,谢谢分享
    2020-06-02
  • yff950703 :
    大哥,带标签的数据集是咋整出来的啊???看着图片选定一个个的按行列号替换吗。。。。。。?
    2019-09-26
  • qq_38004451 :
    不错
    2019-06-18

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明