DRLND-project-2 该存储库包含项目2的实现。 项目详情 到达者 该项目实现了PPO,用于解决Unity环境中的连续控制问题-使机械臂跟随旋转的航点-在具有20个代理的变体版本上。 最终执行记录: 当手臂末端位于目标球体内/目标航路点的固定范围内时,每个代理随时间累积的奖励。 代理的目标是遵循路标。 对于每个代理,状态空间具有33个维度,而动作空间具有4个连续维度。 该任务是情节性的,当特工在100个连续情节中获得+30的平均分数时,该任务被认为已解决。 履带式 该项目的可选/额外/挑战部分是控制爬虫。 在面对正确方向和该方向的速度时,每个四脚实体尝试遵循目标目标时,每个代理随时间累积的奖励。 该环境具有12个代理,每个代理以129维观察状态,并以20维控制动作。 该环境基于。 入门 依存关系 可以根据依赖关系来设置此项目的依赖关系。 以下说明将引导您逐步设置该
1
使用OpenAI Gym和TensorFlow结合广泛的数学知识来掌握经典RL,深度RL,分布式RL,逆RL等 关于这本书 近年来,随着算法质量和数量的显着提高,《 Python上的动手强化学习》第二版已完全改编为示例丰富的指南,用于学习最新的强化学习(RL)和使用TensorFlow和OpenAI Gym工具包的深度RL算法。 除了探索RL基础知识和基本概念(例如Bellman方程,Markov决策过程和动态规划)之外,第二版还深入探讨了基于价值,基于策略和批评演员的RL方法的全过程,并提供了详细的数学知识。 它深入探索了最新的算法,例如DQN,TRPO,PPO和ACKTR,DDPG,TD3和SAC,从而使基础数学神秘化并通过简单的代码示例演示了实现。 本书有几章专门介绍新的RL技术,包括分布式RL,模仿学习,逆RL和元RL。 您将学习如何利用OpenAI基准库的改进“稳定基准”轻
1
Time-series-forecasting-via-deep-reinforcement-learning
2022-07-18 16:07:00 104KB 代码
1
Easy-RL 李宏幽默老师的《深度强化学习》是强化学习领域经典的中文视频之一。李老师幽默风趣的上课风格让晦涩难懂的强化学习理论变得轻松易懂,他会通过很多有趣的例子例证解强化学习理论。某些老师经常会用玩Atari游戏的例子解释解解强化学习算法。如此,为了课程的补充,我们整理了周博磊老师的《强化学习纲要》,李科浇老师的《百度强化学习》。以及多个强化学习的经典资料作为补充。对于想入门强化学习又想看中文讲解的人来说绝对是非常推荐的。 使用说明 第4章到第11章为的部分; 第1章和第2章根据整理而来; 第3章和第12章根据整理而来。 在线阅读(内容实时更新) 地址: : 内容导航 章节 习题 项目 算法代码实现一览 算法名称 相关论文材料 备注 进度 蒙特卡洛算法 好的 好的 好的 好的 DQN-cnn 与DQN索引使用了CNN而不是全链接网络 好的 好的 分层DQN 好的 好的 DDPG 好
1
强化学习对抗攻击和防御 DQN政策 战略定时攻击 统一攻击 对抗训练 该存储库为深度强化学习代理实现了一些经典的对抗攻击方法,包括( drl_attacks/ ): 统一攻击[]。 战略定时攻击[]。 临界点攻击[]。 关键策略攻击。 对抗性政策攻击[]。 也可以使用以下RL防御方法( drl_defenses/ ): 对抗训练[]。 还提供了一些图像防御方法( img_defenses/ ): JPEG转换[]。 位压缩[ ]。 图像平滑[]。 该项目大部分基于基于的RL框架守。 图片敌对攻击和防御都与实施 ,也是基于Pytorch。 相反,A2C和PPO策略基于pytorch-a2c-ppo-acktr-gail ,DQN使用了天守实现。 任何图像对抗攻击都与此项目兼容。 可用型号 它还可以在文件夹log找到适用于不同任务的训练有素的模型。 下表报告了三种
1
MuZero与Tensorflow中的AlphaZero 我们提供了基于流行的AlphaZero-General实施的AlphaZero和MuZero算法的可读性,注释性,充分记录的以及概念上容易实现的算法。 我们的实现将AlphaZero扩展为可用于单人游戏域,例如其后续产品MuZero。 该代码库提供了一个模块化框架来设计您自己的AlphaZero和MuZero模型,以及一个API来使这两种算法相互抵触。 该API还允许MuZero代理在与环境交互过程中更加强烈地依赖其学习的模型。 程序员可以例如指定在试验期间对所学的MuZero代理的观察稀疏性。 我们的界面还提供了足够的抽象来扩展MuZero或AlphaZero算法,以用于研究目的。 请注意,我们没有在桌游上进行广泛的测试,我们体验到这非常耗时且难以调整。 经过良好测试的环境包括“健身房”环境:CartPole-v1,Mount
1
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019 Nguyen Cong Luong , Dinh Thai Hoang , Member, IEEE, Shimin Gong , Member, IEEE, Dusit Niyato , Fellow, IEEE,PingWang , Senior Member, IEEE, Ying-Chang Liang , Fellow, IEEE, and Dong In Kim , Fellow, IEEE
2022-05-09 17:14:09 5.17MB 强化学习 综述 通信和网络
1
cadrl_ros(使用Deep RL避免冲突) 用Deep RL训练的动态避障算法的ROS实现 纸: M.Everett,Y.Chen和JP How,《具有深度强化学习的动态决策代理之间的运动计划》,IEEE / RSJ国际智能机器人和系统会议(IROS),2018年 论文: : 视频: : Bibtex: @inproceedings{Everett18_IROS, address = {Madrid, Spain}, author = {Everett, Michael and Chen, Yu Fan and How, Jonathan P.}, bookti
1
Tensorflow 2 Keras的深度强化学习 注意:需要tensorflow == 2.1.0 它是什么? keras-rl2在Python中实现了一些最先进的深度强化学习算法,并与深度学习库无缝集成。 此外, keras-rl2可以与一起使用。 这意味着评估和使用不同算法很容易。 当然,您可以根据自己的需要扩展keras-rl2 。 您可以使用内置的Keras回调和指标或定义自己的指标。 更重要的是,只需扩展一些简单的抽象类,即可轻松实现自己的环境甚至算法。 文档可。 包含什么? 截止到今天,已经实现了以下算法: 深度Q学习(DQN) [1] , [2] Double DQN [3] 深度确定性策略梯度(DDPG) [4] 连续DQN(CDQN或NAF) [6] 交叉熵方法(CEM) [7] , [8] 决斗网络DQN(Dueling DQN) [9] 深层S
2022-04-23 11:05:32 898KB algorithms deep-reinforcement-learning deep dqn
1
Algorithm-Deep-reinforcement-learning-with-pytorch.zip,Pythorch实现DQN、AC、Acer、A2C、A3C、PG、DDPG、TRPO、PPO、SAC、TD3和….,算法是为计算机程序高效、彻底地完成任务而创建的一组详细的准则。
2022-04-12 09:25:33 69.17MB Algorithm
1