deep learning 中文版 ,带书签
2025-07-26 23:04:11 30.63MB 深度学习
1
深度学习(Deep Learning)是人工智能领域的一个重要分支,它主要关注如何通过计算机模拟人脑神经网络的方式进行学习和预测。这个压缩包包含了两份关于深度学习的重要资源:一本是中文版的《深度学习》(Deep Learning 中文版 2017.3.15.pdf),另一本是英文原版的《deep learning.pdf》。这两本书籍都是由深度学习领域的先驱者,包括Yoshua Bengio、Ian Goodfellow和Aaron Courville等人编著的。 1. **神经网络基础**:深度学习的核心是神经网络,它是由许多个处理单元(神经元)按照一定层次结构组成的计算模型。这些神经元通过权重连接,形成多层的网络结构,每一层对输入数据进行一次转换,逐层提取特征。 2. **反向传播算法**:在训练神经网络时,反向传播算法是关键。它通过计算损失函数相对于每个参数的梯度,来更新网络中的权重,以最小化预测结果与真实值之间的误差。 3. **卷积神经网络(CNN)**:在图像识别和计算机视觉任务中,卷积神经网络表现出色。CNN利用卷积层提取图像特征,并通过池化层降低数据维度,实现高效处理。 4. **循环神经网络(RNN)**:对于序列数据如文本和语音,循环神经网络可以捕获时间依赖性。RNN的特点在于其具有记忆单元,允许信息在时间步之间流动。 5. **长短时记忆网络(LSTM)**:为了解决标准RNN在处理长序列时的梯度消失问题,提出了LSTM,它增加了门控机制,能更好地保持和遗忘长期依赖信息。 6. **生成对抗网络(GAN)**:GAN是深度学习中的创新应用,由生成器和判别器两部分组成,通过对抗性训练,可以生成逼真的新样本。 7. **深度强化学习(DRL)**:将深度学习与强化学习结合,使智能体能够通过与环境交互学习最优策略,例如在AlphaGo中击败世界围棋冠军。 8. **深度学习框架**:实现深度学习通常需要借助如TensorFlow、PyTorch或Keras等开源框架。这些框架提供了高级API,简化了模型构建和训练过程。 9. **模型优化**:深度学习模型的优化涉及超参数调整、正则化、批量归一化、学习率调度等方法,以提高模型的泛化能力和训练速度。 10. **分布式训练**:对于大规模数据集和复杂模型,分布式训练是必要的。通过多GPU或多节点并行计算,可以加速训练过程。 这两本书不仅介绍了深度学习的基本概念,还涵盖了最新的研究进展和技术应用,是初学者和专业人士深入理解深度学习的宝贵资源。阅读过程中,读者可以通过对照中文版和英文版,加深对理论的理解,同时提升英文阅读能力。
2025-07-26 23:01:27 85.9MB deep learnin
1
用于人类活动识别的深度学习(和机器学习) CNN,DeepConvLSTM,SDAE和LightGBM的Keras实施,用于基于传感器的人类活动识别(HAR)。 该存储库包含卷积神经网络(CNN)[1],深度卷积LSTM(DeepConvLSTM)[1],堆叠降噪自动编码器(SDAE)[2]和用于人类活动识别(HAR)的Light GBM的keras(tensorflow.keras)实现。 )使用智能手机传感器数据集, UCI智能手机[3]。 表1.在UCI智能手机数据集上的五种方法之间的结果摘要。 方法 准确性 精确 记起 F1分数 轻型GBM 96.33 96.58 96.37 96.43 CNN [1] 95.29 95.46 95.50 95.47 DeepConvLSTM [1] 95.66 95.71 95.84 95.72 SDAE [
2025-07-15 10:34:57 1.84MB machine-learning deep-learning keras lightgbm
1
标题和描述中提到的知识点主要包括以下几个方面: 1. 统一的自然语言处理架构:文章提出了一个统一的深度神经网络架构,这个架构可以应用于不同的自然语言处理任务,如词性标注、句法分析、命名实体识别、语义角色标注、寻找语义相似的词汇以及评估句子的语义和语法正确性。 2. 深度神经网络和多任务学习:所谓的统一架构使用了卷积神经网络,并通过多任务学习同时对多个语言处理任务进行训练。多任务学习意味着在训练过程中使用了权重共享的策略,这在一定程度上缓解了传统单独训练模型时的数据过拟合问题。 3. 半监督学习:文中提到除了语言模型以外的其他任务都使用了标记的数据进行训练。语言模型则是从无标记文本中学习得到的,这代表了一种新颖的半监督学习方式来训练共享任务。 4. 自然语言处理(NLP)的子任务:文档提到自然语言处理的任务不仅包括了句法层面的任务,如词性标注、句法分析(chunking)、语义层面的任务,如词义消歧、语义角色标注、命名实体识别和指代消解等。这些子任务被认为是应用程序开发和分析的有用工具。 5. 统一架构的必要性:当前大多数研究分析这些任务是单独进行的,很少有系统能够帮助开发一个统一的架构,这对于更深入的语义任务而言是必要的。这些系统通常具有三个显著的缺点:(i)分类器往往是浅层的,(ii)为了达到良好的性能需要大量的训练数据,(iii)通常缺乏深度模型架构的设计。 6. 现代NLP应用:文档提及当前自然语言处理的终端应用包括信息提取、机器翻译、摘要生成、搜索引擎和人机界面等。 7. 语言模型的重要性:语言模型能够学习词汇之间的统计关系,从而能够评估句子的流畅性和语义性,这在语言处理中非常关键。 8. 通用性(generalization)的提升:文档展示了多任务学习和半监督学习如何提升模型的通用性,并带来最先进的性能表现。 从上述信息中可以看出,文档内容着重于介绍一种能够处理自然语言的深度学习框架,并强调其在多任务学习和半监督学习方面的创新。这类架构有助于提高模型处理多种NLP任务的能力,并通过共享知识提升模型在不同任务上的表现。此外,文档还指出了目前大多数系统在深度学习和模型统一性方面的不足,从而突出了作者提出的架构在当前NLP研究领域中的先进性和潜在的价值。
2025-07-14 14:19:20 329KB nlp
1
PixelAnnotation工具 Linux/MAC Windows Donate 该软件可让您手动和快速注释目录中的图像。 该方法是伪手动方法,因为它使用为OpenCV算法。 总体思路是手动为标记提供画笔,然后启动算法。 如果首先需要分割,则用户可以通过在错误区域上绘制新标记来细化标记(如以下视频所示)。 范例: 来自用户( )的小例子: : v tX-xcg5wY4U 建立依赖关系: > = 5.x > = 2.8.x > = 2.4.x 对于Windows编译器:在Visual Studio> = 2015下工作 如何建造去 下载二进制文件: 转到发布
2025-07-09 22:01:09 21.03MB opencv computer-vision deep-learning annotation
1
This is the readme for applying deep learning for joint channel estimation and detection in OFDM system. 只是其中一部分,另一部分,分开上传,因为太大le The codes have been tested on Ubuntu 16.04 + tensorflow 1.1 + Python 2.7 Dependences: 1. Tensorflow 2. Winner Channel Model Get Start: cd ./DNN_Detection python Example.py
2025-06-19 18:16:59 27KB deep learnin python ofdm
1
拉姆代斯兰群岛 递归比较Clojure或ClojureScript数据结构,并生成结果的彩色差异。 Deep-diff2最主要用于创建供人类使用的视觉差异,如果您要以编程方式比较/修补Clojure数据结构,则可能更合适,请参阅 。 支持Lambda Island开源 deep-diff2是Lambda Island标签上发布的越来越多的高质量Clojure库和工具的一部分。 如果您正在商业上使用此项目,那么您将可以来偿还该,以便我们可以继续享受欣欣向荣的Clojure生态系统。 安装 部门 lambdaisland/deep-diff2 {:mvn/version "2.0.108"} project.clj [lambdaisland/deep-diff2 "2.0.108"] 用 ( require '[lambdaisland.deep-diff2 :as ddiff]) (
2025-06-13 18:56:33 139KB Clojure
1
森林课堂 - 智能积分管理系统 系统简介 森林课堂是一个专为教师设计的智能积分管理平台,采用生动有趣的森林主题,让班级管理变得轻松愉快。通过积分激励的方式,培养学生良好的行为习惯,提升课堂参与度。 核心特色 直观的积分管理 实时积分统计和展示 可视化的积分排行榜 灵活的积分调整功能 详细的积分历史记录 激励奖励系统 自定义奖品管理 积分兑换奖品 智能库存管理 激励目标设定 便捷的学生管理 批量导入学生信息 分组管理功能 个性化学生档案 数据导出功能 数据分析功能 班级积分概览 个人成长轨迹 积分趋势分析 行为表现分析 应用场景 课堂表现记录 作业完成情况 行为习惯养成 班级活动参与 特殊贡献奖励 系统优势 界面清新友好,操作简单直观 激励机制科学,促进学生成长 数据统计全面,支持决策分析 管理方式灵活,适应不同需求 移动端完美适配,随时随地使用 使用建议 适用于: 小学班级管理 课后辅导机构 特色教育活动 行为习惯培养 让我们一起,用积分管理的方式,创造更有趣、更有效的教育环境!
2025-06-12 23:08:28 990KB cursor
1
Deep Belief Nets in C++ and CUDA C Volume 2 Autoencoding in the Complex Domain 英文epub 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2025-06-10 16:15:02 5.46MB Deep Belief Nets CUDA
1
grokking deep learning Andrew.W.Trask 2019 Grokking Deep Learning was written to help give you a foundation in deep learning so that you can master a major deep learning framework. It begins by focusing on the basics of neural networks and then switches its focus to provide an in-depth look at advanced layers and architectures
2025-06-03 10:37:18 13.59MB 深度学习
1