### 深度学习与PyTorch:逐步指南 #### 一、概述 《Godoy -- Deep Learning with PyTorch Step-by-Step -- 2022》是一本旨在为初学者提供深入理解和掌握深度学习及其在PyTorch框架中的应用的书籍。作者Daniel Voigt Godoy以其丰富的经验和清晰的讲解方式,引导读者从零开始逐步了解并实践深度学习项目。本书自2021年首次发布以来,已经经历了多次修订,最新版本为2022年的v1.1.1。 #### 二、版权与免责声明 该书版权所有者为Daniel Voigt Godoy,并明确指出所有权利均受法律保护。书中所包含的信息和指导都是基于作者的最佳努力而提供的。然而,无论直接还是间接地,因使用或应用本书内容而导致的任何损失、损害、责任或费用,作者均不承担任何责任。此外,如果读者使用了书中提及的技术(如代码样本)涉及开源许可或其他知识产权问题,则需自行确保其使用符合相关许可和权利规定。 #### 三、内容简介 本书主要分为以下几个部分: 1. **序言**:介绍编写本书的目的和背景,以及读者群体定位。 2. **基础概念**:包括深度学习的基础知识,如神经网络的基本原理、激活函数、损失函数等。 3. **PyTorch入门**:介绍如何安装和设置PyTorch环境,以及PyTorch的基础操作和数据处理方法。 4. **实战项目**:通过一系列具体的案例来演示如何使用PyTorch构建和训练深度学习模型。这些案例涵盖了图像分类、自然语言处理等多个领域。 5. **高级主题**:探讨深度学习领域的前沿技术和高级技巧,如迁移学习、生成对抗网络(GANs)、注意力机制等。 6. **附录**:提供了一些有用的资源链接和参考文献,帮助读者进一步扩展知识面。 #### 四、目标读者 本书特别适合对深度学习感兴趣的初学者阅读。无论是计算机科学专业学生还是希望转行进入人工智能领域的职场人士,都能从这本书中获得有价值的信息和技术指导。对于有一定编程基础但对深度学习不太熟悉的读者来说,本书也能提供一个循序渐进的学习路径。 #### 五、特色与价值 1. **循序渐进的学习路径**:本书按照难度递增的方式组织内容,帮助读者从基础知识入手,逐渐过渡到更复杂的项目。 2. **丰富的实战案例**:书中提供了大量实际案例,让读者能够在实践中加深理解,并学会如何解决实际问题。 3. **清晰易懂的解释**:作者通过简洁明了的语言和详尽的示例代码,使得复杂概念变得容易理解。 4. **持续更新**:随着深度学习技术的发展,本书也不断进行修订和更新,确保内容始终紧跟技术前沿。 #### 六、总结 《Godoy -- Deep Learning with PyTorch Step-by-Step -- 2022》是一本适合初学者的优秀深度学习教程,不仅覆盖了深度学习的基础理论,还提供了丰富的实战案例。通过本书的学习,读者可以系统地掌握使用PyTorch进行深度学习项目的方法,为进一步探索人工智能领域打下坚实的基础。
2026-02-11 16:48:40 33.58MB
1
深度学习DNN正向预测神经网络与逆向设计神经网络模型 超表面参数设计 反射谱预测fdtd仿真 复现lunwen:2018 Advanced Material:A Bidirectional Deep Neural Network for Accurate Silicon Color Design lunwen介绍:利用深度学习DNN神经网络模型,实现反射谱预测与结构参数逆向设计功能 结构色体现为结构的反射谱线,构建两个DNN模型,一个用于输入结构参数,输出对应的结构色谱线参数,不需要FDTD仿真即可得到预测谱线 第二个DNN模型用于逆向设计,输入所结构色谱线参数,网络可以输出对应的结构尺寸参数,根据目标来设计结构 案例内容:主要包括四原子结构的反射谱仿真计算,以及构建结构参数与反射谱线的庞大的数据库 包括两个深度学习模型,一个是正向预测DNN模型,包括网络框架的构建,pytorch架构,网络的训练以及测试;还有一个逆向设计的DNN模型,同样包括网络的训练和预测 以及做了一个例子的对照和使用 可以随机更改参数来任意设计超表面原子的参数 案例包括fdtd模型、fdtd设计脚本、pytho
2026-01-26 18:08:22 5.24MB ajax
1
本文介绍了Deep JSCC(深度联合信源信道编码)在无线图像传输中的应用。传统的分离式图像传输方案存在悬崖效应,即在信道条件低于某阈值时性能急剧下降。Deep JSCC通过神经网络联合训练信源信道编码,避免了比特流传输,直接将图像映射为隐含变量z并恢复为输出图像。实验表明,Deep JSCC在低信噪比环境下仍能保持良好性能,克服了悬崖效应,并在中等压缩率和高信噪比下优于传统通信系统。此外,该方案在计算复杂度上也具有一定优势。通过大量数值模拟,Deep JSCC在有限信道带宽和低SNR情况下表现优异,且在所有平均SNR值下均优于传统分离式传输方案。 Deep JSCC图像传输技术是一种将图像编码与信道编码相结合的全新传输方案。在传统图像传输领域中,信源编码与信道编码通常是分离进行的,即首先将图像压缩转换为比特流,再通过信道编码确保这些比特流能够可靠地传输。然而,这种方法在某些情况下会遇到所谓的“悬崖效应”,即在信道条件稍微恶化时,性能会迅速下降,导致接收端无法正确解码图像。 为解决这一问题,研究人员提出了Deep JSCC方法。这种方法运用神经网络技术,将源图像直接映射为一个隐含变量z,这个过程并不生成传统的比特流,而是直接传输z。在接收端,通过神经网络的逆过程可以将隐含变量z恢复成清晰的图像。这一过程的关键在于联合训练信源编码和信道编码,使得整个传输系统能够更加高效地应对各种信道条件。 在研究中,实验者进行了大量的数值模拟来测试Deep JSCC在不同信道条件下的性能。实验结果表明,在低信噪比的环境下,Deep JSCC仍能保持稳定的传输性能,显著减少了传统方案中存在的悬崖效应。此外,在中等压缩率和高信噪比条件下,与传统的分离式传输方案相比,Deep JSCC显示出明显的优越性。 除了传输性能的提升,Deep JSCC还具有计算复杂度低的优势。传统方案需要大量的编解码操作,而Deep JSCC通过减少这些操作,可以更快地处理图像,并且降低了运算资源的需求。这在有限的信道带宽或低信噪比环境中尤为重要,因为它可以提高系统的实际应用效率。 在技术实现上,Deep JSCC采用了深度学习中的神经网络模型,这一模型需要大量的数据进行训练,以达到在各种信道条件下都能准确恢复图像的能力。数据的质量和多样性对于模型的泛化能力具有重要影响。而模型一旦训练完成,就可以在实际应用中快速地对图像进行编码和解码。 Deep JSCC图像传输技术的研究和应用,不仅在图像通信领域有着潜在的广泛应用前景,也为无线图像传输提供了一种新的思路。随着无线通信技术的快速发展,这样的技术能够极大地提高数据传输的效率和可靠性,为用户带来更好的体验。尤其在移动通信、远程医疗、卫星通信等领域,Deep JSCC技术的应用将具有重要意义。 展望未来,Deep JSCC技术的进一步研究和开发将集中于提高传输效率、降低计算复杂度、以及扩展到更广泛的信号类型上。通过优化神经网络结构和算法,可以进一步提升性能,使其适应更加复杂多变的通信环境。此外,随着相关硬件技术的发展,如专用的神经网络加速器,将有助于将Deep JSCC技术推向市场,使其在实际应用中得到广泛应用。
2026-01-23 16:26:15 234KB 软件开发 源码
1
随着人工智能技术的不断发展,深度学习在计算机视觉领域的应用变得越来越广泛。其中,halcon作为一款功能强大的机器视觉软件,其提供的深度学习工具可以帮助用户进行图像标注和模型训练。而YOLO(You Only Look Once)作为一种高效的目标检测算法,以其速度快、准确率高的特点受到了广泛的关注。本文将介绍如何将halcon深度学习工具的标注数据转换成YOLO可以使用的格式,以便直接用于训练,进而提升图像识别与检测的效率和精度。 了解halcon的深度学习工具对于数据标注的支持是非常必要的。halcon的标注数据通常是存储为.hdict格式的文件,这种文件包含了图像数据及其对应的标注信息。为了将这些数据转换为YOLO训练所需的格式,halcon提供了相关的代码实现,即Trans_Halcon_to_python.hdev,该脚本能够解析.hdict文件,并将其转换为YOLO所支持的数据格式。 在转换过程中,halcon代码需要处理不同类型的图像任务,比如语义分割、实例分割等。语义分割是对图像中的每个像素进行分类,而实例分割则是在语义分割的基础上进一步区分同一类别的不同实例。在本次数据转换中,提供了多个具有代表性的深度学习任务实例文件,如针对pill bags(药片袋)和screws(螺丝)的目标检测与定位(Object Detection)任务,以及对水果进行分类(Classification)和对药片袋进行实例分割(Instance Segmentation)的案例。 这些.hdict文件包含了训练模型所需的关键信息,例如特征点的坐标、类别标签、目标区域的形状和尺寸等。转换代码的作用是读取这些信息,并将其转换为YOLO训练框架可以识别的标注格式。通常,YOLO使用一种特定的文本格式来表示目标的边界框和类别信息,格式通常为文本文件,每行对应一个目标,包含五个值:类别索引、中心点x坐标、中心点y坐标、宽度、高度。 转换后的数据将包括:训练图像文件、标注信息文件和配置文件(如coco128)。其中,coco128是指使用COCO数据集格式转换得到的128×128分辨率的图像,这有助于在数据转换过程中维持数据的统一性和标准化。 转换后的数据可以直接用于YOLO模型的训练。用户可以按照YOLO的训练流程,设置好网络架构、损失函数、优化算法等参数,然后进行模型的训练。值得注意的是,在进行数据转换时,还需考虑数据集的划分,即将数据集分为训练集、验证集和测试集,以保证训练出的模型具有良好的泛化能力。 此外,针对不同的深度学习任务类型,转换代码可能需要做出相应的调整。例如,对于语义分割任务,每个像素点的类别标签都需要转换为YOLO的标注格式;而对于实例分割任务,则需要识别出每个独立实例的轮廓,并转换为相应的边界框信息。 将halcon深度学习工具标注的数据转换为YOLO训练格式,是深度学习图像处理中的一个重要环节。这一过程不仅涉及到了数据格式的转换,还包括了对不同图像任务处理策略的理解。通过合理的转换,可以有效地利用halcon在视觉数据处理方面的优势,结合YOLO在目标检测领域的高效性能,从而提高模型训练的效率和目标识别的准确性。
2025-12-20 23:49:12 33.66MB halcon yolov DeepLearning 数据转换
1
计算机视觉注释工具(CVAT) CVAT是用于计算机视觉的免费,在线,交互式视频和图像注释工具。 我们的团队正在使用它来注释数百万个具有不同属性的对象。 许多UI和UX决策都是基于专业数据注释团队的反馈。 在线尝试 。 文献资料 截屏 支持的注释格式 单击“上传注释”和“转储注释”按钮后,可以选择格式。 数据集框架允许通过其命令行工具和Python库进行其他数据集转换。 有关支持的格式的更多信息,请参阅。 注释格式 进口 出口 X X X X X X X 分割蒙版 X X X X X X X X X X X X X X X X X X X X X X X X 深度学习无服务器功能,用于自动标记 名称 类型 框架 中央处理器 显卡 互动者 OpenVINO X 探测器 OpenVINO X 探测器 OpenVINO X 探测器
2025-12-10 22:26:23 24.77MB computer-vision deep-learning annotation tensorflow
1
压实、采摘和种植 (CPG) 这是 CPG 的官方 Pytorch 实现——一种用于对象分类的终身学习算法。 有关CPG的详细信息,请参阅论文《 ( , ) 该代码仅供学术研究使用。 如需商业用途,请联系教授( )。 基准测试 施引论文 如果这些代码有助于您的研究,请引用以下论文: @inproceedings{hung2019compacting, title={Compacting, Picking and Growing for Unforgetting Continual Learning}, author={Hung, Ching-Yi and Tu, Cheng-Hao and Wu, Cheng-En and Chen, Chien-Hung and Chan, Yi-Ming and Chen, Chu-Song}, booktitle={Advance
1
SCI 文献资源————DeepMIH: Deep Invertible Network for Multiple Image Hiding DeepMIH:用于多图像隐藏的深度可逆网络 摘要——多图像隐藏旨在将多个秘密图像隐藏到一个封面图像中,然后完美地恢复所有秘密图像。这种高容量的隐藏很容易导致轮廓阴影或颜色失真,这使得多图像隐藏非常具有挑战性任务在本文中,我们提出了一种新的基于可逆神经网络的多图像隐藏框架,即DeepMIH。明确地我们开发了一个可逆隐藏神经网络(IHNN),创新地将图像的隐藏和揭示建模为其前向和后向过程,使它们完全耦合和可逆。IHNN非常灵活,可以根据需要级联多次实现了对多个图像的隐藏。为了增强不可见性,我们设计了一个重要度图(IM)模块来引导当前图像基于先前的图像隐藏结果进行隐藏。此外,我们发现隐藏在高频子带中的图像倾向于实现了更好的隐藏性能,从而提出了一种低频小波损失来约束在低频子带。实验结果表明,我们的DeepMIH在在各种数据集上隐藏不可见性、安全性和恢复准确性。 【DeepMIH: 多图像隐藏的深度可逆网络】 多图像隐藏技术是信息安全领域的一个重要研究方向,其目标是将多个秘密图像无痕迹地嵌入到一个封面图像中,以便于秘密信息的传输和存储,同时确保封面图像在视觉上与原始图像几乎无法区分。然而,高容量的图像隐藏往往会导致封面图像出现轮廓阴影或颜色失真,增加了多图像隐藏的难度。针对这一挑战,研究人员提出了DeepMIH,即深度可逆网络用于多图像隐藏的框架。 DeepMIH的核心是可逆隐藏神经网络(IHNN),这是一个创新的设计,它将图像的隐藏和揭示过程建模为前向和后向过程,这两个过程是完全耦合且可逆的。这意味着可以隐藏和恢复图像而不牺牲原始图像的质量。IHNN的灵活性在于,它可以被级联多次,以适应不同数量的秘密图像隐藏需求。 为了提高隐藏的不可见性,DeepMIH引入了重要度图(IM)模块。这个模块根据先前图像的隐藏结果来指导当前图像的隐藏,确保秘密信息的嵌入尽可能不引起视觉察觉。通过对图像的重要部分进行智能选择,可以有效地减少隐藏操作对封面图像的影响。 此外,研究发现,将图像隐藏在高频子带中可以实现更好的隐藏效果。因此,DeepMIH提出了低频小波损失,以限制秘密信息在低频子带中的存在,进一步提升隐藏的安全性。通过这种方式,可以确保秘密信息更安全地隐藏在难以察觉的高频部分,减少对低频成分的干扰,从而保持封面图像的视觉质量。 实验结果显示,DeepMIH在多种数据集上表现出卓越的性能,无论是在隐藏的不可见性、安全性还是恢复准确性方面,都明显优于其他现有的先进方法。这些成果对于改进图像隐藏技术,尤其是多图像隐藏的效率和安全性具有重要意义,为秘密通信和信息安全提供了更强大的工具。 DeepMIH通过深度可逆网络和创新的策略,成功解决了多图像隐藏中的难题,提高了隐藏质量和恢复准确率。这一工作不仅展示了深度学习在图像隐藏领域的潜力,也为未来的研究开辟了新的路径,如如何进一步优化可逆神经网络的设计,或者探索更复杂的隐藏策略以适应不同的应用场景。
2025-11-09 15:36:46 11.27MB 深度学习
1
DeepBGC:生物合成基因簇的检测和分类 DeepBGC使用深度学习来检测细菌和真菌基因组中的BGC。 DeepBGC使用双向长期短期记忆递归神经网络和Pfam蛋白域的word2vec样载体嵌入。 使用随机森林分类器预测产品类别和检测到的BGC的活性。 :pushpin: 消息 :pushpin: DeepBGC 0.1.23:预测BGCs现在可以在antiSMASH使用JSON输出文件被上传用于可视化 根据以下说明,照常安装和运行DeepBGC 上传antismash.json从DeepBGC输出文件夹使用“上传额外的注释” 页 预测的BGC区域及其预测分数将与antiSMASH BGC一起显示 刊物 用于生物合成基因簇预测的深度学习基因组挖掘策略Geoffrey D Hannigan,David Prihoda等人,《核酸研究》,gkz654, //doi.org/10.1093/nar/gkz654 使用
2025-10-29 18:34:24 557KB python deep-learning bidirectional-lstm
1
在本项目中,"matlabconv2代码-Deep-Semantic-Space-NST:深度语义空间引导的多尺度神经风格迁移" 提供了一个利用MATLAB实现的深度语义空间引导的多尺度神经风格迁移算法。这个算法是计算机视觉和图像处理领域的一种创新应用,特别是在图像风格转移技术上。下面我们将详细探讨相关的知识点。 1. **神经风格迁移(Neural Style Transfer, NST)**: NST是一种基于深度学习的技术,用于将一幅图像的风格(例如梵高的画风)转移到另一幅图像的内容上。它通过学习和利用卷积神经网络(CNN)的中间层特征来实现风格和内容的分离与匹配。 2. **深度语义空间**: 深度语义空间是指由深度学习模型(如CNN)学到的高层特征空间,这些特征能够捕获图像的抽象语义信息。在这个空间中,相似的语义内容会有相近的表示,而不同的风格则体现在不同的特征层。 3. **多尺度**: 在多尺度神经风格迁移中,算法不仅在单一尺度上进行风格迁移,而是同时考虑不同分辨率的图像特征,以更全面地捕捉图像的风格信息,并提高转移效果的细节保真度。 4. **MATLAB和conv2函数**: MATLAB是一种广泛使用的编程环境,尤其在科学计算和工程应用中。在这个项目中,`conv2`函数用于执行二维卷积操作,这是CNN的核心运算之一。通过卷积,可以提取图像的特征,进而进行风格和内容的分析。 5. **开源系统**: 项目的标签为"系统开源",意味着源代码是公开的,允许用户查看、学习和修改。这鼓励了社区参与,促进了技术的共享和进步。 6. **Deep-Semantic-Space-NST-master文件夹**: 这个文件夹很可能是项目的主要源代码仓库,包含MATLAB代码和其他相关资源。用户可以通过下载并解压这个压缩包,然后在MATLAB环境中运行代码来实现深度语义空间引导的多尺度神经风格迁移。 7. **项目实施步骤**: - **预处理**:输入图像需要被预处理,包括大小调整、格式转换等,以便于后续计算。 - **模型构建**:构建一个预训练的CNN模型,如VGG19,用于提取图像的风格和内容特征。 - **特征提取**:使用`conv2`函数以及CNN模型的特定层来提取输入图像的内容和风格特征。 - **损失函数定义**:定义内容损失和风格损失,以衡量风格转移的质量。 - **优化过程**:通过反向传播和优化算法(如梯度下降)迭代更新输入图像的像素,使其逐步接近目标风格,同时保持内容信息。 - **结果输出**:生成风格转移后的图像,并可进一步进行后处理以优化视觉效果。 以上就是关于这个MATLAB项目的关键知识点,理解这些概念有助于你理解和实现自己的神经风格迁移算法。开源代码的可用性使得研究者和开发者可以直接参与到这种先进技术的研究与实践中,推动图像处理技术的不断创新和发展。
2025-10-23 23:48:06 399.51MB 系统开源
1
在金融领域,量化交易是一种利用计算机程序自动化执行买卖策略的方式,它依赖于数学模型和算法来做出投资决策。近年来,随着机器学习技术的发展,特别是深度学习和强化学习的应用,量化交易也进入了新的阶段。"Deep Q-trading"是将深度强化学习应用于量化交易的一种方法,旨在通过自动学习交易策略来提高投资绩效。 强化学习(Reinforcement Learning, RL)是一种通过智能体与环境的交互来学习最优策略的学习方式。在交易场景中,智能体(即交易系统)根据市场状态(环境)做出买入、卖出或持有的决策,并通过收益(奖励)来调整其行为。Q-learning作为强化学习的一种,通过更新Q值表来逐步优化策略,但当状态和动作空间非常大时,传统的Q-learning难以处理。 深度学习(Deep Learning)通过多层神经网络对复杂数据进行建模,大大提高了模式识别和预测能力。结合强化学习,形成深度Q-learning(Deep Q-Network, DQN),可以解决Q-learning在高维度状态空间中的问题,通过神经网络近似Q值函数,实现高效学习。 论文中提出的Deep Q-trading系统就是基于深度Q-learning构建的,它能够端到端地决定在每个交易时间点应持有什么样的头寸。这种方法的优点在于,它能够从历史市场数据中自动学习并适应不断变化的市场模式,而无需人为设定规则。 实验结果显示,Deep Q-trading系统不仅优于传统的买入并持有策略,还超越了使用循环强化学习(Recurrent Reinforcement Learning, RRL)的策略,后者被认为在处理序列数据时比Q-learning更有效。这表明深度Q-learning在捕捉市场动态和长期依赖性方面具有显著优势。 关键词:量化分析、深度学习、强化学习、金融 1. 引言部分指出,算法交易在股票市场受到研究者和实践者的关注。方法大致分为基于知识和基于机器学习两类。基于知识的方法依赖于金融研究或交易经验设计策略,而基于机器学习的方法则直接从历史市场数据中学习。机器学习方法的优势在于能够发现人类未知的盈利模式。 2. 深度Q-learning在游戏和机器人控制等复杂任务中的成功应用启发了将其应用于量化交易的尝试。由于交易市场的动态性和非线性特性,深度Q-learning能够提供一种灵活且适应性强的解决方案。 3. 实验结果验证了深度Q-learning在量化交易中的有效性,表明这种方法在处理金融数据时有显著的性能提升,为自动化交易策略提供了新的思路。 4. 未来的研究可能涉及改进模型的稳定性和泛化能力,以及探索更多类型的深度强化学习方法在量化交易中的应用,例如使用策略梯度方法或结合其他类型的神经网络架构。 "Deep Q-trading"通过融合深度学习和强化学习,为量化交易提供了一种高效且自适应的策略学习框架,有望进一步推动金融领域的智能决策系统的发展。
2025-10-10 22:26:53 900KB 量化交易 深度学习 强化学习
1