实现进度条、复选框等功能
2021-11-01 18:12:49 6KB Qt中模型、视图和委托
1
SSD:单发MultiBox检测器 介绍 这是我的2种模型的pytorch实现: SSD-Resnet50和SSDLite-MobilenetV2 。 这些模型基于论文描述的原始模型(SSD-VGG16)。 此实现支持混合精度训练。 SSD Resnet50的输出示例。 动机 为什么在已经有许多ssd实现的情况下存在此实现? 我相信许多人在看到此实现时都会想到这个问题。 实际上,Pytorch中已经有许多SSD及其变体的实现。 但是,其中大多数是: 过于复杂 模块化 增加了许多改进 未评估/可视化 以上几点使学习者难以理解原始ssd的外观。 因此,我将重点放在简单性上来重新实现这个众所周知的模型。 我相信此实现适合不同级别的ML / DL用户,尤其是初学者。 与本文中描述的模型相比,有一些小的更改(例如主干),但是其他部分严格遵循本文。 数据集 数据集 班级 #火车图片 #验证图片
1
192_bins_256_hop_size_640_ms_5_deep_48_n_filters_1000000.tflite
2021-11-01 17:00:21 5.36MB resteasy
1
卷积网络Python实现+源代码,一步一步实现卷积神经网络的训练代码,能学习到具体的实现
2021-11-01 16:55:16 114.22MB deep learning
1
BigGAN-PyTorch 作者的正式非官方PyTorch BigGAN实现。 此仓库包含由Andrew Brock,Jeff Donahue和Karen Simonyan的训练中的BigGAN的4-8 GPU训练代码。 这段代码是由Andy Brock和Alex Andonian编写的。 如何使用此代码 你会需要: 版本1.0.1 tqdm,numpy,scipy和h5py ImageNet培训集 首先,您可以选择为目标数据集准备经过预处理的HDF5版本,以实现更快的I / O。 遵循此步骤(或不执行此操作),您将需要计算FID所需的Inception时刻。 这些都可以通过修改
2021-11-01 16:48:03 2.4MB deep-learning pytorch neural-networks gans
1
这是一个YoloV4-pytorch的源码,可以用于训练自己的模型。 YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 目录 实现的内容 Achievement 所需环境 Environment 注意事项 Attention 小技巧的设置 TricksSet 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 实现的内容 主干特征提取网络:DarkNet53 => CSPDarkNet53 特征金字塔:SPP,PAN 训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减 激活函数:使用Mish激活函数 ……balabla 所需环境 torch==1.2.0 注意事项 代码中的yolo4_weights.pth是基于608x608的图片训练的,但是由于显存原因。我将代码中的图片大小修改成了416x416。有需要的可以修改回来。 代码中的默认anchors是基于608x608的图片的。
2021-11-01 16:05:50 5.32MB Python Deep Learning
1
音乐生成器 介绍 使用TensorFlow实验各种深度学习模型以生成音乐 结果 解释不同的模型和实验。 安装 该程序需要以下依赖项(易于使用pip进行安装): Python 3 TensorFlow(已通过v0.10.0rc0测试。不适用于以前的版本) CUDA(有关使用gpu的信息,请参见TensorFlow 以了解更多信息) Numpy(应该与TensorFlow一起安装) 御堂(MIDI图书馆) Tqdm(用于不错的进度条) OpenCv(很抱歉,没有简单的方法可以使用python 3安装它。它主要用作可视化工具来打印钢琴卷,因此是非常可选的。所有OpenCv调用都包含在i
2021-11-01 14:48:51 178KB deep-learning tensorflow rnn music-generation
1
PyTorch GAN :laptop:与 :laptop: = :red_heart: 此仓库包含各种GAN架构的PyTorch实现。目的是使初学者更容易开始玩和学习GAN。 我发现的所有存储库都掩盖了某些内容,例如将某些网络层中的偏向设置为False而没有解释为什么要做出某些设计决定。此仓库使每个设计决策透明。 目录 什么是GAN? GAN最初是由Ian Goodfellow等人提出的。在一份名为“的开创性论文中。 甘斯是一个框架,2个模型(通常为神经网络),称为发电机(G)和鉴别器(d),玩游戏极大极小彼此抵靠。生成器正在尝试学习真实数据的分布,这是我们通常感兴趣的网络。在游戏中,生成器的目的是欺骗鉴别器“思考”它生成的数据是真实的。另一方面,鉴别器的目的是正确地区分生成的(伪)图像和来自某些数据集(例如MNIST)的真实图像。 设置 git clone https://github.com/gordicaleksa/py
2021-11-01 11:04:11 65.9MB python machine-learning deep-learning pytorch
1
用于交通信号控制的Deep Q学习代理 深入的Q-Learning强化学习代理尝试在交叉路口选择正确的交通信号灯相位以最大化交通效率的框架。 我已将其上传到此处,以帮助任何人寻找通过SUMO进行深度强化学习的良好起点。 这段代码是从我的硕士论文中提取的,它代表了我的论文工作所用代码的简化版本。 我希望您可以找到此存储库对您的项目有用。 入门 这些说明将为您提供在本地计算机上运行的项目的副本。 我认为,以下是最简单的步骤,以便以最少的工作量从头开始运行算法。 强烈建议使用配备NVIDIA GPU的计算机。 下载Anaconda()并安装。 下载SUMO( )并安装。 按照简短指南正确正确地安装tensorflow-gpu,不会出现问题。 简而言之,该指南告诉您打开Anaconda Prompt或任何终端,然后键入以下命令: conda create --name tf_gpu ac
1
单图深度估计Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields-附件资源
2021-11-01 09:37:39 106B
1