CS285 Deep Reinforcement Learning 2021 Lecture Slides UCL的深度强化学习课程的PPT
2022-07-13 21:07:30 2.67MB 深度强化学习
1
人工智能(AI)系统可以被定义为像人类一样理性思考和行动的系统(Bellman, 1978; Kurzweil et al., 1990; Schalkoff, 1991; Rich and Knight, 1992; Winston, 1992; Haugeland, 1997; Russell and Norvig, 2005)。虽然这个词在1956年著名的达特茅斯会议上被正式创造出来(McCarthy et al., 2006; Woo, 2014),追溯到亚里士多德和柏拉图的哲学家都在考虑制定法则来管理大脑的理性部分。创造智能系统的想法激发了神话的灵感,比如塔洛斯的故事,神创造了一个巨大的青铜机器人,它携带着神秘的生命来源,守护着克里特岛(Shashkevich, 2019)。从那时起,心理学家、行为学家、认知科学家、语言学家和计算机科学家一直支持各种理解智能和开发人工智能系统的方法。 对当前机器学习系统的一个关键批评是,它们往往是数据饥渴的(Marcus, 2018;福特,2018)。以GPT-3模型(Brown et al., 2020)为例,这是一个大规模的语言模型,使
2022-07-13 09:11:46 6.52MB 机器学习 自然语言处理 人工智能
通过多模型监督学习算法进行收入预测 寻找慈善捐助者 胡安·罗隆(Juan E.Rolon),2017年 项目概况 在此项目中,我采用了几种监督算法,以使用从1994年美国人口普查中收集的数据准确地预测个人收入。 我们执行各种测试过程,以从初步结果中选择最佳候选算法,然后进一步优化该算法以对数据进行最佳建模。 此实现的主要目标是构建一个模型,该模型可以准确地预测个人的收入是否超过50,000美元。 在非营利机构中,组织可以靠捐赠生存,这种任务可能会出现。 了解个人的收入可以帮助非营利组织更好地理解要请求的捐赠额,或者是否应该从一开始就伸出援手。 虽然直接从公共来源确定个人的一般收入等级可能很困难,但我们可以从其他公共可用功能中推断出此价值。 该项目是从Udacity获得机器学习工程师Nanodegree所需条件的一部分。 安装 此项目需要Python 2.7和已安装的以下Python
1
数据集名称:成人自闭症谱系筛查数据 摘要:自闭症谱系障碍(ASD)是一种与显着的医疗费用有关的神经发育疾病,早期诊断可以显着减少这些疾病。 不幸的是,等待ASD诊断的时间很长,而且程序的成本效益也不高。 自闭症的经济影响和全世界ASD病例数量的增加表明,迫切需要开发易于实施和有效的筛查方法。 因此,迫切需要进行时间高效且可访问的ASD筛查,以帮助卫生专业人员并告知个人是否应进行正式的临床诊断。 全球ASD病例数的快速增长需要与行为特征相关的数据集。 但是,这样的数据集很少,因此很难进行全面的分析以提高ASD筛选过程的效率,敏感性,特异性和预测准确性。 目前,与临床或筛查有关的自闭症数据集非常有限,并且大多数都是自然遗传的。 因此,我们提出了一个与成人自闭症筛查有关的新数据集,其中包含20个特征,可用于进一步分析,特别是在确定有影响力的自闭症特征和改善ASD病例分类方面。 在此数据集中,我们
1
End-to-End Semi-Supervised Learning for Video Action Detection的阅读涂鸦 CVPR 2022 task:端到端的半监督视频动作检测方法
2022-04-06 03:11:27 10.66MB 论文阅读 深度学习
1
协同训练是半监督的一个很好的范例,它要求用两个特征视图来描述数据集。 许多协同训练算法都有一个显着的特征:应以高置信度预测所选的未标记实例,因为高置信度得分通常表示相应的预测是正确的。 不幸的是,使用这些高置信度未标记实例并不总是能够提高分类性能。 本文提出了一种新的半监督学习算法,结合了联合训练和主动学习的优点。 该算法根据高置信度和最近邻两个准则应用协同训练来选择最可靠的实例,以提高分类器的性能,并利用具有人类注释能力的信息量最大的实例来提高分类性能。 在几个UCI数据集和自然语言处理任务上进行的实验表明,我们的方法在牺牲相同的人工量的情况下实现了更显着的改进。
2022-03-25 15:37:30 2.08MB Semi-supervised learning; Co-training; Confidence
1
PG学习 一种用于半监督学习的高效有效的学习图算法。 (MATLAB代码) 说明:运行代码和示例 在使用代码之前,您应该编译util / lib / mtimesx /文件夹中的mtimesx lib。 请参考 。 对于Mac OS用户,您可以首先使用Homebrew安装openblas库,然后运行 bias_lib = 'path to libblas.dylib' mex('-DDEFINEUNIX','-largeArrayDims','mtimesx.c',blas_lib) 安装所需的库后,您应该在根文件夹EXCUTE的main.m。 之后,您可以在根文件夹下运行所有​​的matlab文件。 在示例文件夹中,我们提供了有关单线程版本PG-Learn,超宽带并行版本PG-Learn以及一些基线的示例,其中包括网格搜索,随机搜索,MinEnt,AEW和IDML。 此外,我们还提供
2022-03-24 10:14:54 10.63MB semi-supervised-learning MATLAB
1
蛤 整个幻灯片图像上的数据高效和弱监督计算病理学。 自然生物医学工程 | | | TL; DR: CLAM是一种高通量且可解释的方法,可使用幻灯片级别的标签对数据进行有效的整个幻灯片图像(WSI)分类,而无需任何ROI提取或补丁级别的注释,并且能够处理多类子类型化问题。 经过训练的模型在三个不同的WSI数据集上进行了测试,可适应WSI切除和活检以及智能手机显微镜图像(显微照片)的独立测试队列。 CLAM:基于深度学习的管道,可进行高效数据和无监督的全幻灯片级别分析 ••••••••预打印•演示•引用 CLAM如何工作? 聚类约束的注意力多实例学习(CLAM)是一种基于深度学习的弱监督方法,该方法使用基于注意力的学习来自动识别具有较高诊断价值的子区域,以便准确地对整个幻灯片进行分类,同时还利用实例代表区域上的高级别聚类,以约束和完善特征空间。 :copyright: Mahmood Lab-此代码在GP
1
半监督学习的最新大作, MIT 出版 Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien
2022-03-17 10:42:16 5.99MB bookl semi-supervised; ssl
1
Nb2Nb 该项目旨在了解论文“ Neighbor2Neighbor:来自单噪声图像的自我监督降噪”的思想。 由于此代码是非官方的实现,因此某些细节可能与本文的原始说明有所不同。 为了更容易理解基础理论,所有代码均由Python和Tensorflow编写。 样品结果 所有结果均在上进行了测试 嘈杂的影像 去噪结果 更新 测试文件(包括经过训练的模型)已上传。 主要测试文件是“ test.py”,可以通过输入命令轻松运行。 python test . py - s saves - n nets . Unet - d dataDir - r resultDir “ dataDir”指定测试数据目录,“ resultDir”是保存结果的路径。 要渲染“ .mat”数据,请使用“ 。 更多培训文件将尽快上载。 未完待续 ...
2022-02-21 10:45:39 214.92MB denoising self-supervised-learning Python
1