细粒度的自我监督学习 此存储库具有与用于细粒度图像分类的自我监督学习相关的代码。 我使用了木薯植物病数据集
2021-07-07 16:26:16 137KB JupyterNotebook
1
半监督文本分类的对抗训练方法 规范 此代码重现用 。 设置环境 请安装和 。 您可以使用此轻松设置环境。 下载预训练模型 请下载预先训练的模型。 $ wget http://sato-motoki.com/research/vat/imdb_pretrained_lm.model 结果 模型 错误率 基线 7.39 基准(我们的代码) 6.62 对抗性 6.21 对抗训练(我们的代码) 6.35 虚拟对抗训练 6.40 虚拟对抗训练 5.91 虚拟对抗训练(我们的代码) 5.82 跑 预训练 $ python -u pretrain.py -g 0 --layer
1
我们已经更改了存储库,现在可以在找到PackNet-SfM
1
在最新AAAI 2020的邀请嘉宾报告上,Facebook人工智能总监、图灵奖得主Yann Lecun给了自监督学习的报告《Self-Supervised Learning 》,44页ppt,介绍了深度学习面临的挑战,自监督学习的光明前景,基于能量学习的因变量模型,介绍最新自监督学习的进展与问题,是非常值得看的报告。
2021-05-03 23:04:16 30.37MB Self-Supervised
1
甘伯特 论文代码GAN-BERT:具有健壮标签分类示例的生成式对抗性学习和一堆带标签的示例已在2020年ACL上发表-Danilo Croce (罗马大学Tor Vergata),朱塞佩·卡斯特鲁奇( Giuseppe Castellucci) (亚马逊)和Roberto Basili的短文(罗马大学的Tor Vergata)。该文件可以在找到。 GAN-BERT是BERT的扩展,它使用“生成对抗”设置来实现有效的半监督学习模式。它允许使用由有限数量的标记示例和未标记材料的较大子集组成的数据集训练BERT。 GAN-BERT可用于序列分类任务(也涉及对文本对)。 该代码在TREC数据集上运行GAN-BERT实验,以实现细粒度的“问题分类”任务。我们在此程序包中提供了代码和用于运行实验的数据,方法是使用2%的标记材料(109个示例)和5343个未标记的示例。测试集由500个带注释的示例组成
1
一篇数据挖掘课的作业论文。 关于半监督学习方面的综述性文章。 所参考文献在2009年以前。 目前这方面的中文文献相对较少,希望我的这篇作业能对有兴趣做这方面研究的朋友有所帮助,其中错误之处还请大家多多指出。
1
LED软件
2021-03-18 14:03:46 253.64MB supervised learning
1
FP7195是一个外置 N-MOSFET 的 LED 驱动 IC。 由于 FP7195 采用高压端点电流侦测,而且 IC 补偿回路采用电流模式,具有优异的动态响应又能简化外部补偿回路。FP7195是用高压制程生产,可提供 6.5V~80V 宽电压的应用环境。FP7195同时具有数字调光功能与仿真调光(线性调光)功能。IC 内置温度保护机制,当 IC 内部温度超过保护值,输出电流会开始线性下降。
2021-03-04 15:07:09 953KB supervised learning
1
机器学习的初级课程
2021-03-02 16:00:20 16KB 机器学习
1