半监督学习,将联合训练与主动学习相结合

上传者: 38694674 | 上传时间: 2022-03-25 15:37:30 | 文件大小: 2.08MB | 文件类型: -
协同训练是半监督的一个很好的范例,它要求用两个特征视图来描述数据集。 许多协同训练算法都有一个显着的特征:应以高置信度预测所选的未标记实例,因为高置信度得分通常表示相应的预测是正确的。 不幸的是,使用这些高置信度未标记实例并不总是能够提高分类性能。 本文提出了一种新的半监督学习算法,结合了联合训练和主动学习的优点。 该算法根据高置信度和最近邻两个准则应用协同训练来选择最可靠的实例,以提高分类器的性能,并利用具有人类注释能力的信息量最大的实例来提高分类性能。 在几个UCI数据集和自然语言处理任务上进行的实验表明,我们的方法在牺牲相同的人工量的情况下实现了更显着的改进。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明