蛤 整个幻灯片图像上的数据高效和弱监督计算病理学。 自然生物医学工程 | | | TL; DR: CLAM是一种高通量且可解释的方法,可使用幻灯片级别的标签对数据进行有效的整个幻灯片图像(WSI)分类,而无需任何ROI提取或补丁级别的注释,并且能够处理多类子类型化问题。 经过训练的模型在三个不同的WSI数据集上进行了测试,可适应WSI切除和活检以及智能手机显微镜图像(显微照片)的独立测试队列。 CLAM:基于深度学习的管道,可进行高效数据和无监督的全幻灯片级别分析 ••••••••预打印•演示•引用 CLAM如何工作? 聚类约束的注意力多实例学习(CLAM)是一种基于深度学习的弱监督方法,该方法使用基于注意力的学习来自动识别具有较高诊断价值的子区域,以便准确地对整个幻灯片进行分类,同时还利用实例代表区域上的高级别聚类,以约束和完善特征空间。 :copyright: Mahmood Lab-此代码在GP
1
NCRF 该存储库包含用于重现论文主要结果的代码和数据: 如果您发现代码/数据很有用,请引用以上文章: @inproceedings{li2018cancer, title={Cancer Metastasis Detection With Neural Conditional Random Field}, booktitle={Medical Imaging with Deep Learning}, author={Li, Yi and Ping, Wei}, year={2018} } 如果您有任何疑问,请将其发布在github问题上或发送电子
1
转换组织病理学/细胞病理学机器学习任务的助手 主流程 扫描一些WSI。 使用WSI注释工具进行一些注释。 (和 , 现在可参见了解详情。) 然后wsiprocess帮助将WSI +注释数据转换为补丁和易于使用的注释数据。 将为您提供GUI。 有关请参见 ,以及在已修补图像和从原始WSI加载之间进行。 安装 点用户 安装或 。 有关安装提示,请参见[wiki]。 安装wsiprocess pip install wsiprocess Anaconda用户 # Only for python 3.6 or higher conda install -c tand826 wsiprocess 文献资料 例子 作为python模块 请参阅以检查流。 基本用法 import wsiprocess as wp slide = wp . slide ( "xxx.tiff" ) annot
1