NIPS'14-SSL 使用深度生成模型重现我们的 NIPS 2014 论文关于半监督学习 (SSL) 的一些关键结果的代码。 DP Kingma、DJ Rezende、S. Mohamed、M. Welling 具有深度生成模型的半监督学习神经信息处理系统的进展 27 ( NIPS 2014 ),蒙特利尔 使用此代码进行研究时,请引用本文。 警告:此代码远未完全注释。 对于问题和错误报告,请发送电子邮件至dpkingma[at]gmail.com 。 先决条件 确保安装了以下最新版本: Python(2.7 或更高版本) Numpy(例如pip install numpy ) Theano(例如pip install Theano ) 在 Theano 配置的[global]部分(通常是~/.theanorc )中设置floatX = float32 。 或者,您可以在
2022-02-20 17:46:43 152.14MB Python
1
自监督学习(Self-supervised learning)最近获得了很多关注,因为其可以避免对数据集进行大量的标签标注。它可以把自己定义的伪标签当作训练的信号,然后把学习到的表示(representation)用作下游任务里。最近,对比学习被当作自监督学习中一个非常重要的一部分,被广泛运用在计算机视觉、自然语言处理等领域。它的目标是:将一个样本的不同的、增强过的新样本们在嵌入空间中尽可能地近,然后让不同的样本之间尽可能地远。这篇论文提供了一个非常详尽的对比自监督学习综述。
2022-01-23 22:33:07 5.72MB 对比学习
1
混合搭配 这是MixMatch的非官方PyTorch实现。 Tensorflow的官方实现在。 现在只有在CIFAR-10上的实验可用。 该存储库认真执行了官方实施的重要细节,以重现结果。 要求 Python 3.6+ PyTorch 1.0 torchvision 0.2.2(旧版本与此代码不兼容) 张量板 进步 matplotlib 麻木 用法 火车 通过CIFAR-10数据集的250个标记数据训练模型: python train.py --gpu --n-labeled 250 --out cifar10@250 通过CIFAR-10数据集的4000个标记数据训练模型: python train.py --gpu --n-labeled 4000 --out cifar10@4000 监控培训进度 tensorboard.sh --
1
半监督学习很好的入门文献,简单易懂,该文是半监督学习领域的代表之作。
2021-12-20 17:48:51 1.15MB 半监督学习
1
在Pytorch中进行对比学习变得简单 似乎我们可以进行图像的自我监督学习。 这是一种使用Pytorch包装器的简单方法,可以在任何视觉神经网络上进行对比式自我监督学习。 目前,它包含足够的设置供一个人在SimCLR或CURL中使用的任何一种方案上进行训练。 您可以包装接受可视输入的任何神经网络,无论是Resnet,策略网络还是GAN的鉴别器。 其余的都照顾好了。 问题 事实证明,CURL的结果。 建议您使用SimCLR设置,直到另行通知。 安装 $ pip install contrastive-learner 用法 SimCLR(具有标准化温度标度的交叉熵损失的投影头) import torch from contrastive_learner import ContrastiveLearner from torchvision import models resnet = m
1
semi-supervised-learning半监督学习详细介绍PPT——共61页
2021-12-13 14:00:17 4.67MB ssl
semi-supervised-learning 深度学习半监督相关算法,主要是文献《Mean teachers are better role models》算法,经测试在一般分类问题上精度都会有几个点的提升。 1.数据存放到data目录,每个类别图片存放到一个文件里面,然后用makelist生成列表文件:path label,把无标签的数据标签设置为:-1 2.运行mean_teacher.py
2021-12-13 05:40:49 6KB Python
1
半监督序列学习 此回购记录了重现论文给出的结果的实验​​。 简而言之,我们在未标记的文本数据上对序列自动编码器或语言模型进行预训练,然后使用标记的文本数据对使用预训练权重初始化的基于RNN的序列分类器进行微调,与随机初始化的权重相比,分类精度更高。 资料准备 IMDB数据集 我们为此实验使用。 下载并解压缩,导航至目录aclImdb/train ,该目录aclImdb/train中包含带aclImdb/train/pos的正( aclImdb/train/pos )和带标签的负性( aclImdb/train/neg )以及未标签的评论( aclImdb/train/unsup )。 然后cd进入每个子目录并运行 for f in *.txt; do (cat "${f}"; echo) >> pos.txt; done for f in *.txt; do (cat "${f}"; ec
1
Semi-Supervised-Learning-Using-Gaussian-Fields-and-Harmonic-Functions_notes
2021-12-06 10:20:42 199KB
1
机器学习 这些是我用一些数据集实现的一些流行的机器学习算法。 其中包括线性回归(多变量)的实现,逻辑和线性回归的梯度下降,决策树,随机森林,朴素贝叶斯。 它们都是用python 3.5编写的。
2021-11-13 19:48:43 4.12MB JupyterNotebook
1