FixMatch 这是FixMatch的非官方PyTorch实施。 Tensorflow的官方实现在。 此代码仅在FixMatch(RandAugment)中可用。 结果 CIFAR10 #标签 40 250 4000 纸(RA) 86.19±3.37 94.93±0.65 95.74±0.05 这段代码 93.60 95.31 95.77 累积曲线 * 2020年11月。修复EMA问题后重新测试。 CIFAR100 #标签 400 2500 10000 纸(RA) 51.15±1.75 71.71±0.11 77.40±0.12 这段代码 57.50 72.93 78.12 累积曲线 *使用以下选项进行训练--amp --opt_level O2 --wdecay 0.001 用法 火车 通过CIFAR-10数据集的4000个标记数据训练模
2024-08-04 22:38:58 17KB pytorch semi-supervised-learning deeplearning
1
半监督分层递归图神经网络用于城市范围内的停车位可用性预测 这是SHARE体系结构的Pytorch实现,如论文《。 如果您在研究中利用SHARE模型,请引用以下内容: @article{zhang2019semi, title={Semi-Supervised Hierarchical Recurrent Graph Neural Network for City-Wide Parking Availability Prediction}, author={Zhang, Weijia and Liu, Hao and Liu, Yanchi and Zhou, Jingbo and Xiong, Hui}, booktitle={Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligen
1
半监督单图像去雾 半监督单图像去雾代码。 依赖 pytorch >= 1.0 visdom 数据集制作 通过以下方式使您成为数据集: 合成图像:将两张图像(朦胧(HxWxC),清洁(HxWxC))对齐为一张图像(Hx2WxC)。 要注意的是,H和W应该是8的倍数。将它们( ./datasets/dehazing/train张图像)放在./datasets/dehazing/train 。 真实的模糊图像:将它们( ./datasets/dehazing/unlabeled张图像)放在./datasets/dehazing/unlabeled 测试图像:与1.对齐,然后将它们放在./datasets/dehazing/test 火车 您可以通过以下方式训练模型: python train.py --dataroot ./datasets/dehazing --name run_
2022-10-29 20:19:08 491KB semi-supervised-learning dehazing Python
1
End-to-End Semi-Supervised Learning for Video Action Detection的阅读涂鸦 CVPR 2022 task:端到端的半监督视频动作检测方法
2022-04-06 03:11:27 10.66MB 论文阅读 深度学习
1
协同训练是半监督的一个很好的范例,它要求用两个特征视图来描述数据集。 许多协同训练算法都有一个显着的特征:应以高置信度预测所选的未标记实例,因为高置信度得分通常表示相应的预测是正确的。 不幸的是,使用这些高置信度未标记实例并不总是能够提高分类性能。 本文提出了一种新的半监督学习算法,结合了联合训练和主动学习的优点。 该算法根据高置信度和最近邻两个准则应用协同训练来选择最可靠的实例,以提高分类器的性能,并利用具有人类注释能力的信息量最大的实例来提高分类性能。 在几个UCI数据集和自然语言处理任务上进行的实验表明,我们的方法在牺牲相同的人工量的情况下实现了更显着的改进。
2022-03-25 15:37:30 2.08MB Semi-supervised learning; Co-training; Confidence
1
PG学习 一种用于半监督学习的高效有效的学习图算法。 (MATLAB代码) 说明:运行代码和示例 在使用代码之前,您应该编译util / lib / mtimesx /文件夹中的mtimesx lib。 请参考 。 对于Mac OS用户,您可以首先使用Homebrew安装openblas库,然后运行 bias_lib = 'path to libblas.dylib' mex('-DDEFINEUNIX','-largeArrayDims','mtimesx.c',blas_lib) 安装所需的库后,您应该在根文件夹EXCUTE的main.m。 之后,您可以在根文件夹下运行所有​​的matlab文件。 在示例文件夹中,我们提供了有关单线程版本PG-Learn,超宽带并行版本PG-Learn以及一些基线的示例,其中包括网格搜索,随机搜索,MinEnt,AEW和IDML。 此外,我们还提供
2022-03-24 10:14:54 10.63MB semi-supervised-learning MATLAB
1
半监督学习的最新大作, MIT 出版 Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien
2022-03-17 10:42:16 5.99MB bookl semi-supervised; ssl
1
NIPS'14-SSL 使用深度生成模型重现我们的 NIPS 2014 论文关于半监督学习 (SSL) 的一些关键结果的代码。 DP Kingma、DJ Rezende、S. Mohamed、M. Welling 具有深度生成模型的半监督学习神经信息处理系统的进展 27 ( NIPS 2014 ),蒙特利尔 使用此代码进行研究时,请引用本文。 警告:此代码远未完全注释。 对于问题和错误报告,请发送电子邮件至dpkingma[at]gmail.com 。 先决条件 确保安装了以下最新版本: Python(2.7 或更高版本) Numpy(例如pip install numpy ) Theano(例如pip install Theano ) 在 Theano 配置的[global]部分(通常是~/.theanorc )中设置floatX = float32 。 或者,您可以在
2022-02-20 17:46:43 152.14MB Python
1
混合搭配 这是MixMatch的非官方PyTorch实现。 Tensorflow的官方实现在。 现在只有在CIFAR-10上的实验可用。 该存储库认真执行了官方实施的重要细节,以重现结果。 要求 Python 3.6+ PyTorch 1.0 torchvision 0.2.2(旧版本与此代码不兼容) 张量板 进步 matplotlib 麻木 用法 火车 通过CIFAR-10数据集的250个标记数据训练模型: python train.py --gpu --n-labeled 250 --out cifar10@250 通过CIFAR-10数据集的4000个标记数据训练模型: python train.py --gpu --n-labeled 4000 --out cifar10@4000 监控培训进度 tensorboard.sh --
1