Given a photo of an apple leaf, can you accurately assess its health? The dataset contains training and testing images, a total of 3642,to identify the category of foliar diseases in apple trees.(给定一张苹果叶的照片,您可以准确评估它的健康吗?这个数据集为了确定苹果树中的叶病类别,提供了3642 张训练和测试图像。) Plant Pathology 2020 - FGVC7_datasets.txt
2024-03-09 16:00:53 430B 数据集
1
kaggle-Plant-Pathology:竞赛
2022-11-04 12:11:36 2KB
1
自适应颜色解卷积 (ACD) ============ 这是基于我们论文中描述的自适应颜色反卷积的组织学图像颜色归一化的实现: Yushan Zheng、Zhiguo Jiang、Haopeng Zhang、Fengying Xie、Jun Shi 和 Chenghai Xue,用于组织学 WSI 归一化的自适应颜色反卷积,生物医学中的计算机方法和程序,v170(2019)第 107-120 页。 要求 TensorFlow(1.3 或更高版本) Python 3.6 麻木 1.14.0 opencv-python 3.4.1 引用 如果您在自己的工作中使用此代码,请引用以下论文: @article{zhengCMPB2019, title = {Adaptive color deconvolution for histological WSI normalizat
1
蛤 整个幻灯片图像上的数据高效和弱监督计算病理学。 自然生物医学工程 | | | TL; DR: CLAM是一种高通量且可解释的方法,可使用幻灯片级别的标签对数据进行有效的整个幻灯片图像(WSI)分类,而无需任何ROI提取或补丁级别的注释,并且能够处理多类子类型化问题。 经过训练的模型在三个不同的WSI数据集上进行了测试,可适应WSI切除和活检以及智能手机显微镜图像(显微照片)的独立测试队列。 CLAM:基于深度学习的管道,可进行高效数据和无监督的全幻灯片级别分析 ••••••••预打印•演示•引用 CLAM如何工作? 聚类约束的注意力多实例学习(CLAM)是一种基于深度学习的弱监督方法,该方法使用基于注意力的学习来自动识别具有较高诊断价值的子区域,以便准确地对整个幻灯片进行分类,同时还利用实例代表区域上的高级别聚类,以约束和完善特征空间。 :copyright: Mahmood Lab-此代码在GP
1
NCRF 该存储库包含用于重现论文主要结果的代码和数据: 如果您发现代码/数据很有用,请引用以上文章: @inproceedings{li2018cancer, title={Cancer Metastasis Detection With Neural Conditional Random Field}, booktitle={Medical Imaging with Deep Learning}, author={Li, Yi and Ping, Wei}, year={2018} } 如果您有任何疑问,请将其发布在github问题上或发送电子
1
植物病理学项目 项目描述: 该项目取自植物病理学。对影响农作物的许多疾病的误诊会导致化学药品的滥用,导致耐药菌病原体的出现,投入成本的增加以及更多爆发,造成重大的经济损失和环境影响。在这个项目中,我们将使用苹果叶片的图像来训练可以正确诊断感染和健康叶片的模型。我们将以对模型进行训练的方式来转换图像,以获取用户将提交的真实世界数据(不同的亮度,角度,叶片位置,颜色等)。 我们最初的目标是95%的准确性,使用EfficientNet b5之后,我们能够达到95.9%的准确性。重要说明是,此项目是使用Google Colab创建的,因此必须使用项目中指定的相同目录路径装载和格式化Drive,才能使用个人计算机运行该项目。 该项目的重点: 格式化要在ImageFolder和DataLoader中使用的图像目录。 图像增强可复制真实世界的数据示例。 为未标记的测试数据创建自定义数据集。 实施转移学习
2021-12-28 20:54:02 1.96MB HTML
1
全球首个临床级病理AI系统原始码及复现。 介绍: 官方Github : : 个人补充部分 数据集下载。自己申请的,可直接使用, 50G左右。下载,密码: i8fv 数据集准备。官方接口需要指定格式,参考code/README.md 。这里我自己写了一个脚本,见code/dataPrepare_for_CNN.py和code/dataPrepare_for_Rnn.py ,改一下相关路径就好。 训练及测试。将官方代码改成单机数据并行训练,加速训练,单GPU也无需更改代码。具体运行命令,参考code/README.md 具体代码运行流程 运行: code/dataPrepare_for_CNN.py ,生成MIL所需的数据 运行code/MIL_train.py和code/MIL_test.py (很慢) 运行: code/dataPrepare_for_Rnn.py ,生成RNN所需的数据
2021-08-17 22:13:19 985KB 系统开源
1
CAP Accreditation Program-Molecular Pathology Checklist.pdf
2021-07-21 19:06:13 809KB MolecularPathol CAP checklist
1