Net2Vis :check_mark_button: 自动网络可视化 :check_mark_button: 抽象级别 :check_mark_button: 统一设计 由 , 和。 可访问。 这是什么? Net2Vis从Keras代码自动为卷积神经网络生成抽象可视化。 这对我有什么帮助? 当查看使用神经网络技术的出版物时,仍然很明显它们之间的区别。 它们大多数是手工制作的,因此缺乏统一的视觉语法。 手工制作这种可视化效果还会造成歧义和误解。 有了Net2Vis,这些问题就解决了。 它旨在提供抽象的网络可视化效果,同时仍提供有关各个层的常规信息。 我们在字形设计中反映了特征的数量以及张量的空间分辨率。 可以通过颜色识别图层类型。 由于这些网络可能变得相当复杂,因此我们增加了对层进行分组的可能性,从而通过替换公共层序列来压缩网络。 最好的是:一旦应用程序运行,您只需要将Keras代码粘贴到浏览器中,并根据该代码自动生成可视化。 您仍然可以调整可视化效果并创建抽象,然后再将其下载
1
细分数据集 确保使用--recurse-submodules签出,有一个子模块'tools'用于常见的点滴)它会加载一个包含图像和遮罩的文件夹,其中包含配置文件(像素值对应于类)。 可在以下上进行训练的示例数据集: : 或者可以从import /文件夹中的脚本中导入COCO / Pascal VOC数据集中的类/图像。 查看训练或测试集和蒙版注释: python -m dataset.view --input /path/to/dataset --train (or --test) 对检查图像的预处理很有用。 查看遮罩文件 python view_labels.py some/file.jpg.mask 训练模型: python main.py --lr 0.1 --batch_size 4 --input /path/to/dataset --model "unet --
1
Denoise Convolutional neural network(DnCNN)代码的tensorflow实现,内含完整代码,可以直接使用
2022-03-22 13:03:15 16.11MB DnCNN TF
1
递归神经网络预测Google股票价格 我试图使用LSTM预测Google股票价格 长短期记忆(LSTM)单元(或块)是递归神经网络(RNN)层的构建单元。 由LSTM单元组成的RNN通常称为LSTM网络。 常见的LSTM单元由单元,输入门,输出门和忘记门组成。 该单元负责在任意时间间隔内“记住”值。 因此,LSTM中的“内存”一词。 就像多层(或前馈)神经网络中一样,这三个门中的每一个都可以被认为是“常规”人工神经元:也就是说,它们计算加权和的激活(使用激活函数)。 从直觉上讲,它们可以看作是通过LSTM连接的值流的调节器。 因此表示“门”。 这些门与单元之间存在连接。 更好的预测模型的结果是:
2022-03-19 15:06:49 690KB google prediction recurrent-neural-networks lstm
1
深度神经网络计算库(clDNN) 停产的仓库 现在,该项目是Intel:registered:OpenVino:trade_mark:Toolkit分发的组成部分。 它的内容和开发已移至 。 要获取最新的clDNN来源,请参考DLDT回购。 深度神经网络计算库( clDNN )是用于深度学习(DL)应用程序的开源性能库,旨在加速英特尔:registered:处理器图形(包括HD图形和Iris:registered:图形)上的DL推理。 clDNN包括高度优化的构建块,用于使用C和C ++接口实现卷积神经网络(CNN)。 我们创建了这个项目,以使DL社区能够在Intel:registered:处理器上进行创新。 支持的用法:图像识别,图像检测和图像分割。 经验证的拓扑: AlexNet *,VG
1
Matlab kpca程序 动态神经正交映射用于故障检测 可以直接运行文件“ Comparison_DPCA_DKPCA_DNOM.m”以获取图1中的DPCA,DKPCA和DNOM的结果。 文件“ Comparison_DPCA_DKPCA_DNOM.m”,“ KPCA.m”和“ constructKernel.m”应位于同一目录中。 我们使用的Matlab版本是R2017b。 我们没有在其他版本的Matlab上测试代码。 为了GPU加速和快速计算,使用PyTorch软件包开发了python代码。 请在运行python代码之前安装所需的python库 文件“ dnom.py”设计用于对TE数据执行DNOM 在运行代码“ dnom.py”之前,请安装以下python库 python == 3.52 numpy == 1.13.3 PyTorch == 0.20 scikit-learn == 0.19.0 有关使用PyTorch进行GPU加速的信息,请参阅 跑步 在Linux上: python3 dnom.py
2022-03-17 14:43:08 4.38MB 系统开源
1
提出了一种基于RBF网络和启发式Q学习的改进,更强大的RNH-QL方法,用于在较大状态空间中进行路径搜索。 首先,如果增加了给定问题的状态空间并且缺少关于环境的先验信息,则解决了强化学习效率低下的问题。 其次,作为权重更新规则的RBF网络,奖励整形可以在某些中间状态下向代理提供额外的反馈,这将有助于以更可控的方式将代理引导至目标状态。 同时,通过Q学习的过程,底层动态知识可以访问它,而不需要上层RBF网络的背景知识。 第三,结合贪婪开发策略训练神经网络,提高了学习效率,实验结果证明了这一点。
1
多任务物理信息神经网络 研究代码库。
2022-03-14 18:48:01 151KB JupyterNotebook
1
fastMRI可再现基准 该存储库的想法是要有一种方法可以在fastMRI数据集单线圈磁道上针对现有的重建算法快速对新解决方案进行基准测试。 迄今为止,已实现或适用于fastMRI数据集的重建算法包括: 零填充重建 ,使用 使用的基于小波的重构(即用贪婪的FISTA解决基于L1的分析公式优化问题) 网络 ,适用于MRI重建 ,一种模块化的展开重建算法,您可以在其中插入最佳的降噪器。 ,一种用于非笛卡尔采集的展开式重建算法,具有密度补偿。 所有神经网络都通过Keras API在TensorFlow中实现。 较旧的(不要认为这是我论文的开始)是使用功能性API进行编码的。 最新的版本在子类API中进行了编码,并且更加模块化。 对于LORAKS重建,由于A / D过采样,您将无法重建正确的fastMRI数据。 重建设置 主要的重建设置是具有随机和“定期采样”的笛卡尔单线圈和多线
1
Hinton - Toronto University - Neural Network for Machine Learning Lecture Notes 课件 有 ppt & pdf 两个版本
2022-03-13 11:30:09 31.7MB machine learning
1