图神经网络 这是一个PyTorch库,用于实现图神经网络和图递归神经网络。 如有任何问题,意见或建议,请发送电子邮件至Fernando Gama(电子邮件至和/或Luana Ruiz(至 。 在可以找到有关源代码本地化示例的深入教程。 () 每当使用此代码的任何部分时,请引用以下论文 F. Gama,AG Marques,G。Leus和A. Ribeiro,“”, IEEE Trans。 信号处理。 ,卷。 67号4,第1034-1049页,2019年2月。 我们注意到,某些特定的具有特定的论文引文,以充分认可各自的贡献者。 作者关于GNN的其他论文是 提交给IEEE Trans的E. Isufi,F。Gama和A. Ribeiro,“ EdgeNets:边变图神经网络” 。 模式分析和马赫数。 智力 F. Gama,E。Isufi,G。Leus和A. Ribeiro,“图,卷积和神经
2022-03-29 14:10:28 46.7MB Python
1
matlab精度检验代码神经网络修剪 描述 神经网络修剪是压缩单个隐藏层神经网络以减小模型大小的方法。 该机器学习算法专门针对物联网设备和其他边缘设备等资源受限的环境而开发。 修剪方法基于通过将相应的权重设为零来从网络中删除神经连接。 该策略源自以下论文:“学习有效的神经网络的权重和连接”,宋涵,杰夫·普尔,约翰·特兰,威廉·J·达利。 NIPS,2015年。 用法 源文件:存储库包含五个用于神经网络修剪的Matlab(.m)文件。 NeuralNetSparse.m,train.m和predict.m是主要的源文件。 nnCostFunction.m和fmincg.m是有助于使用梯度下降训练网络的支持文件。 源文件说明: “ NeuralNetSparse.m”是主文件,其中包含训练网络所需的所有超参数,数据集和训练参数。 不同的超参数可帮助用户训练具有不同配置的神经网络,从而有助于优化精度与模型尺寸之间的权衡。 给定内存预算约束取决于底层设备的限制,那么在稀疏网络和超薄网络之间要进行权衡。 这种权衡取决于所使用的数据集,学习率和内存预算。 因此,为了找出最佳配置,NeuralNet
2022-03-29 09:35:21 48KB 系统开源
1
深度学习中的不确定性量化 此回购包含文献调查和基线的实现,以用于深度学习中的预测不确定性估计。 文献调查 不确定性估算的基本背景 埃夫隆(B. Efron)和蒂布希拉尼(R. Tibshirani)。 “用于标准误差,置信区间和其他统计准确性度量的引导方法。” 统计科学,1986年。 R. Barber,EJ Candes,A。Ramdas和RJ Tibshirani。 “用折刀+进行预测性推论。” arXiv,2019年。 B.埃夫隆。 “ Jackknife-bootstrap之后的标准错误和影响功能。” 皇家统计学会杂志:B系列(方法论),1992年。 J.罗宾斯和A. Van Der Vaart。 “自适应非参数置信集。” 统计年鉴,2006年。 V. Vovk等人,“跨等角预测分布”。 JMLR,2018年。 M. H Quenouille。,“时间序列相关
1
神经机器翻译 这是使用Encoder-Decoder机制以及Attention机制(( )于2016年引入的神经机器翻译的一种实现。Encoder-decoder体系结构通常使用一种编码器,该编码器对将源句子转换成固定长度的向量,解码器根据该向量生成翻译。 本文推测使用固定长度向量是提高此基本编码器-解码器体系结构性能的瓶颈,并建议通过允许模型自动(软)搜索源语句的一部分来扩展此范围。与预测目标词相关,而不必明确地将这些部分形成为一个困难的部分。 编码器: seq2seq网络的编码器是RNN,它为输入句子中的每个单词输出一些值。 对于每个输入字,编码器输出一个向量和一个隐藏状态,并将隐藏状态用于下一个输入字。 解码器: 在最简单的seq2seq解码器中,我们仅使用编码器的最后一个输出。 最后的输出有时称为上下文向量,因为它对整个序列中的上下文进行编码。 该上下文向量用作解码器的初始隐
2022-03-28 11:05:27 5.82MB encoder decoder attention mt
1
文本分类模型 在Pytorch中实现最新的文本分类模型 实施模型 fastText:fastText模型, TextCNN:提出的用于文本分类的CNN TextRNN:用于文本分类的双向LSTM网络 RCNN:在提出的的RCNN模型的实现 CharCNN: 提出的字符级CNN的实现 带有注意力的Seq2seq :,从注意实现seq2seq模型 变压器:提出的变压器模型的实现 要求 Python-3.5.0 熊猫0.23.4 Numpy-1.15.2 Spacy-2.0.13 Pytorch-0.4.1.post2 火炬文字-0.3.1 用法 将数据下载到“ data /”目录中或使
2022-03-28 10:27:15 12.48MB nlp deep-learning pytorch recurrent-neural-networks
1
图形 GraphLIME是节点分类任务中GNN的模型不可知的,局部的和非线性的解释方法。 它使用Hilbert-Schmit独立标准(HSIC)Lasso,这是一个非线性可解释模型。 可以在看到更多详细信息。 这个仓库通过使用令人印象深刻的GNN库实现GraphLIME,并重现了过滤掉无用特征的结果。 即论文中的图3。 安装 只需使用pip即可安装。 > pip install graphlime 用法 此实现易于使用。 您需要做的就是确认模型首先输出对数概率(例如, F.log_softmax()输出),然后实例化GraphLIME对象,最后通过调用explain_node()方法解释特定的节点。 from graphlime import GraphLIME data = ... # a `torch_geometric.data.Data` object model =
1
neural-enhance原资源包 原下载地址:https://github.com/alexjc/neural-enhance/releases/download/v0.0/vgg19_conv.pkl.bz2
2022-03-25 15:46:22 72.62MB neural-enhance
1
Convolutional Neural Networks for Small-footprint Keyword Spotting
2022-03-24 13:34:32 1.09MB cnn
1
matlab 2011 Neural Network Toolbox User's Guide,是matlab 2011神经网络工具箱的详细使用说明
2022-03-23 16:29:30 2.27MB matlab neural network toolbox
1
目标跟踪类的相关代码 在16年或得冠军的代码 若有不足请指正
2022-03-23 16:19:03 578KB 目标跟踪 
1