无监督医学图像分割 刘立豪,当归I阿维莱斯·里维罗和卡罗拉·比比亚恩·舍恩利布。 介绍 在此存储库中,我们提供了的PyTorch实现。 要求 火炬1.5.0 火炬视觉0.4.2 SimpleITK 1.2.4 opencv-python 4.2.0.32 用法 克隆存储库: git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git cd unsupervised-medical-image-segmentation 下载LPBA40数据集的图像和分割蒙版: LPBA40图片: LPBA40标签: 将它们解压缩到文件夹datasets/LPBA40 : datasets/LPBA40/LPBA40_rigidly_registered_pairs data
2024-06-17 17:50:56 114KB Python
1
阈值分割源码matlab 用于新型腹部数据集的皮肤分割的深度学习技术 介绍 该存储库提供了[]中研究的皮肤分割方法的代码,主要是Mask-RCNN,U-Net,全连接网络和用于阈值化的MATLAB脚本。 该算法主要是为了使用RGB图像对创伤患者进行腹部皮肤分割而开发的,这是正在进行的研究工作的一部分,该研究工作旨在开发用于创伤评估的自主机器人[] []。 机器人腹部超声系统具有摄像头查看的腹部区域,以及相应的分段式皮肤面罩。 腹部皮肤数据集的信息 该数据集包含从Google图像搜索在线检索的1,400幅腹部图像,这些图像随后进行了手动分段。 选择图像以保留不同种族的多样性,从而防止分割算法中的间接种族偏见; 700张图像代表肤色较深的人,其中包括非洲,印度和西班牙裔群体,而700张图像代表肤色较浅的人,例如高加索人和亚洲裔群体。 总共选择了400张图像来代表体重指数较高的人,在明亮和黑暗类别之间平均分配。 在数据集准备中,还考虑了个人之间的差异,例如头发和纹身的覆盖范围,以及阴影等外部差异。 图片尺寸为227x227像素。 皮肤像素占整个像素数据的66%,每个单个图像的平均值为54.4
2024-05-30 11:29:55 81.38MB 系统开源
1
svm支持向量机python代码 机器学习语义分割-随机森林,支持向量机,GBC Machine learning semantic segmentation - Random Forest, SVM, GBC.zip
2024-05-21 18:39:18 4.69MB 机器学习 随机森林 支持向量机
1
手动分割 这项工作是出于实践目的而完成的。 网络 在Pytorch中自定义实施 。 仅用于一个输出类。 用于最后提交的模型存储在MODEL.pth文件中。 它已通过上提供的模型进行了预培训,但该模型最初用于汽车细分。 在来自GTEA_gaze数据集的一部分图像上,模型的得分为0.90。 pytorch版本:0.3.1 要回滚pytorch,您只能使用 “ pip卸载火炬” “ pip install火炬== 0.3.1” 用法 测试 尝试“ python test.py -h”以查看更多选项。 只需测试一张图像并通过运行即可重命名输出 “ python test.py -i test1.jpg -o ouput1.jpg” 通过运行测试多个图像 “ python test.py -i test1.jpg test2.jpg --model MODEL.pth” 通过运行在绘图中
2024-01-21 15:03:42 2.81MB Python
1
train:20 test:20
2023-10-16 12:57:48 28.44MB segmentation
1
深入了解消费者购买行为异质性的一种广泛使用的方法是市场细分。 传统的市场细分模型常常忽略消费者行为可能随时间演变的事实。 因此,零售商消耗有限的资源试图为无利可图的消费者提供服务。 本研究调查了科威特国一家中型零售商的增强新近度、频率、货币 (RFM) 分数和消费者终身价值 (CLV) 矩阵之间的整合。 修改后的回归算法调查消费者购买趋势,从销售点数据仓库中获取知识。 此外,本研究应用增强正态分布公式去除异常值,然后采用软聚类模糊 C 均值和硬聚类期望最大化 (EM) 算法对消费者购买行为进行分析。 使用集群质量评估表明,EM 算法的扩展性比模糊 C 均值算法好得多,因为它能够在较小的数据集中分配良好的初始点
2023-10-16 11:19:14 323KB Segmentation Clustering
1
血管分割 1.0.0版从光声图像中分割血管结构并进行可靠性评估 网络: ://math.tut.fi/inversegroup/出版物:P.Raumonen和T.Tarvainen(2018):“通过光声图像对血管结构进行分割并进行可靠性评估”,已提交给Biomedical Optics Express 。 血管分割是用Matlab编写的。 主要功能是vessel_segmentation.m ,它包含一个数字3D数组(光声图像)和一个可选的结构数组,用于指定所需的输入参数,可以使用脚本define_inputs.m对其进行定义。 有关更多详细信息,请参阅特定功能的帮助文档。
2023-08-30 19:22:21 29KB MATLAB
1
NLPCC2016-WordSeg-微博 NLPCC 2016微博分词评估项目 ##任务说明 单词是自然语言理解的基本单元。 但是,中文句子由连续的汉字组成,没有自然的分隔符。 因此,中文分词已成为中文自然语言处理的首要任务,它可以识别句子中单词的顺序并标记单词之间的边界。 与流行的二手新闻数据集不同,我们使用了来自新浪微博的更多非正式文章。 培训和测试数据包含来自各个主题的微博,例如金融,体育,娱乐等。 每个参与者都可以提交三个运行:封闭式运行,半开放式运行和开放式运行。 在封闭的轨道上,参与者只能使用在提供的培训数据中找到的信息。 排除了诸如从外部获得的字数,部分语音信息或姓名列表之类的信息。 在半公开赛道中,除了提供的训练数据之外,参与者还可以使用从提供的背景数据中提取的信息。 排除了诸如从外部获得的字数,部分语音信息或姓名列表之类的信息。 在公开赛道上,参与者可以使用应该
1
伪装物体检测(CVPR2020-Oral) 作者:,,,,,。 0.前言 欢迎加入COD社区! 我们在微信中创建了一个群聊,您可以通过添加联系人(微信ID:CVer222)来加入。 请附上您的从属关系。 该存储库包括详细的介绍,强大的基准(搜索和识别网,SINet)以及用于伪装目标检测(COD)的一键评估代码。 有关伪装物体检测的更多信息,请访问我们的并阅读 / 。 如果您对我们的论文有任何疑问,请随时通过电子邮件与或。 如果您使用SINet或评估工具箱进行研究,请引用本文( ) 0.1。 :fire: 消息 :fire: [2020/10/22] :collision: 可以通过电子邮件( )提供培训代码。 请提供您的姓名和机构。 请注意,该代码只能用于研究目的。 [2020/11/21]已更新评估工具:Bi_cam(cam> threshold)= 1-> Bi_cam(cam> = threshold
1
SharpNLP是C#实现的一个开源的自然语言处理工具集,它提供了如下功能: * 句子分割 * 分词 * 词性标注(POS tagging) * a chunker (used to "find non-recursive syntactic annotations such as noun phrase chunks") * a parser * a name finder * a coreference tool * 访问wordent数据库的借口
2023-04-24 17:23:24 603KB NLP sentiment wordnet segmentation
1