EndoSLAM数据集和内窥镜视频的无监督单眼视觉测程和深度估计方法 EndoSLAM数据集概述 我们介绍了一种内窥镜SLAM数据集,该数据集既包含前体数据又包含合成数据。 数据集的离体部分包括标准和胶囊内窥镜记录。 数据集分为35个子数据集。 具体而言,分别存在结肠,小肠和胃的18、5和12个子数据集。 据作者所知,这是已发布的第一个用于胶囊内窥镜SLAM任务的数据集,具有定时6 DoF姿态数据和高精度3D地图地面真相 使用了两种不同的胶囊和传统的内窥镜相机,具有高分辨率和低分辨率,从而产生了不同的相机规格和照明条件。 来自不同相机的图像具有相同器官的不同分辨率和每个相关器官的深度,是所提出数据集的进一步独特功能。 我们还提供了两种类型的无线内窥镜的图像和姿态值,它们在某些方面彼此不同,例如相机分辨率,帧频以及用于检测Z线,十二指肠乳头和出血的诊断结果。 一些子数据集在两个版本中包
1
人体跌倒检测与追踪 使用Tiny-YOLO oneclass检测帧中的每个人,并使用获取骨骼姿势,然后使用模型从每个人跟踪的每30帧中预测动作。 现在支持7种动作:站立,行走,坐着,躺下,站起来,坐下,跌倒。 先决条件 Python> 3.6 火炬> 1.3.1 原始测试运行在:i7-8750H CPU @ 2.20GHz x12,GeForce RTX 2070 8GB,CUDA 10.2 数据 该项目已经训练了一个新的Tiny-YOLO oneclass模型,以仅检测人的物体并减小模型的大小。 使用旋转增强的人员关键点数据集进行训练,以在各种角度姿势中更可靠地检测人员。 对于动作识别,使用来自跌倒检测数据集(,家庭)的数据,通过AlphaPose提取骨骼姿势,并手动标记每个动作帧,以训练ST-GCN模型。 预训练模型 Tiny-YOLO oneclass- , SPPE
2021-09-10 13:12:59 27.72MB pytorch sort pose-estimation st-gcn
1
手肘法matlab源码快速人体姿势估计CVPR2019 介绍 这是的官方pytorch实现。 在这项工作中,我们专注于两个问题 如何使用与模型无关的方法来减小模型大小和计算。 如何提高简化模型的性能。 在我们的论文中 我们通过减少网络的宽度和深度来减少模型的大小和计算量。 提出快速姿势精馏( FPD )以改善简化模型的性能。 MPII数据集上的结果证明了我们方法的有效性。 我们使用HRNet代码库重新实现了FPD,并在COCO数据集上提供了额外的评估。 我们的方法(FPD)可以在没有地面标签的情况下工作,并且可以利用未标记的图像。 对于MPII数据集 我们首先训练了一个教师模型(沙漏模型,堆栈= 8,num_features = 256,90.520 @ MPII PCKh@0.5)和一个学生模型(沙漏模型,堆栈= 4,num_features = 128,89.040 @ MPII PCKh@0.5)。 然后,我们使用教师模型的预测和真实标签来共同监督学生模型(沙漏模型,堆栈= 4,num_features = 128,87.934 @ MPII PCKh@0.5)。 我们的实验显示
2021-09-10 09:29:16 378KB 系统开源
1
在PyTorch中使用HigherHRNet进行多人人体姿势估计 这是《 》论文的非官方实现。 该代码是的简化版本,同时考虑了易用性。 该代码与完全兼容。 它同时支持Windows和Linux。 该存储库当前提供: 在PyTorch(> = 1.0)中稍高一点的HigherHRNet实现-与官方权重( pose_higher_hrnet_* )兼容。 一个简单的类( SimpleHigherHRNet )加载HigherHRNet网络以进行自下而上的人体姿势估计,加载预先训练的权重,并对单个图像或一批图像进行人工预测。 支持多GPU推理。 通过设计实现多人支持(HigherHRNet是一种自下而上的方法)。 运行实时演示程序的参考代码,该演示程序从网络摄像头或视频文件中读取帧。 该存储库是根据存储库。 不幸的是,与HRNet相比,HigherHRNet的结果和性能有些令人失
1
person_IUV人体区域图片以及IUV坐标矩阵
2021-09-09 09:11:37 307.11MB pose IUV
1
Sports Pose Dataset的部分人体测试图。
2021-09-08 09:12:57 19.64MB pose
1
openpose1.5.1(2019年)中训练好的身体数据。openpose中的批处理文件下载速度极慢,且容易中断。下载后将此文件解压放在openpose根目录下的\models\pose\body_25文件夹中。
2021-09-01 09:13:47 93.67MB pose_iter_584000 caffemodel
使用官方的OpenPose包里的cmd命令下载第三方库文件和第三方包下载速度极其的慢!!!!根本就不可能下载完!!!
2021-08-23 22:51:23 185.38MB caffemodels openpose
1
话题和消息结构的转换odom2current_pose和current_velocity2cmd_vel
2021-08-22 20:01:46 6KB 话题转换
1
matlab相机标定外参代码使用ArTag的单眼相机姿势估计 概述和动机 这是一个ROS教程项目,该项目使用ARtags检测单眼相机(USB网络摄像头)的姿势。 相机信息可从包装中获取。 使用该程序包,将获得宽度,高度,相机矩阵,失真系数,投影矩阵,整流矩阵。 这些数据可以存储在yaml文件中。 camera_info发布者可以从此yaml文件中读取数据并发布相机信息()。 USB网络摄像头提供的原始图像记录器可以由节点发布。 最后,可以使用package确定带有ARtag的相机的姿势。 因此,可以建立相对于ARTags的机器人姿势(使用摄像机)。 这用于室内导航和物体识别(使用ARTag的ID)。 这只是用于基于相机的定位的示例实践方法,在下一步中,多传感器(相机,IMU)将用于直接视觉惯性里程表。 此外,更好的选择是使用3D摄像机(立体摄像机或动力学摄像机)进行摄像机姿态估计,这可能会导致更准确的结果。 这也可以通过上面提到的那些软件包来完成。 先决条件 将您的外部网络摄像头连接到计算机,检查此摄像头的宽度,高度,帧频以及类似以下的运行代码,可以根据您的设备提示来修改设备。 _vi
2021-08-21 15:51:17 11KB 系统开源
1