研究@ Magic Leap(CVPR 2020,口腔) SuperGlue推理和评估演示脚本 介绍 SuperGlue是在Magic Leap完成的2020 CVPR研究项目。 SuperGlue网络是一个图形神经网络,结合了最佳匹配层,该层经过训练可以对两组稀疏图像特征进行匹配。 此存储库包含PyTorch代码和预训练权重,用于在关键点和描述符之上运行SuperGlue匹配网络。 给定一对图像,您可以使用此存储库在整个图像对中提取匹配特征。 SuperGlue充当“中端”,在单个端到端体系结构中执行上下文聚合,匹配和过滤。 有关更多详细信息,请参见: 全文:PDF: 。 作者: Pa
1
人体姿态检测总结,Deep Learning-Based Human Pose Estimation: A Survey
2022-12-27 14:32:20 2.51MB poseestimation
1
本文复现的是是发表在ICCV 2017的工作《Learning Feature Pyramids for Human Pose Estimation》,论文提出了一个新的特征金字塔模块,在卷积网络中学习特征金字塔,并修正了现有的网络参数初始化方法,在人体姿态估计和图像分类中都取得了很好的效果。
2022-12-05 11:13:42 4.44MB 特征金字塔
1
手势识别代码 MATLAB 写的,从外面转过来的。。
2022-11-26 17:21:44 1.23MB matlab
1
人体姿态检测梳理。 AI识别人可以分成五个层次,依次为: 1.有没有人? object detection 2.人在哪里? object localization & semantic segmentation 3.这个人是谁? face identification 4.这个人此刻处于什么状态? pose estimation 5.这个人在当前一段时间里在做什么? Sequence action recognition
2022-06-24 13:00:14 10.21MB 神经网络 Human Pose Estim
1
简单轻巧的人体姿势估计 介绍 在COCO关键点有效数据集上,如果with_gcb模块达到66.5的mAP ,否则达到64.4的mAp 主要结果 COCO val2017数据集上的结果 拱 with_GCB 美联社 Ap .5 AP .75 AP(男) AP(长) 增强现实 AR .5 AR .75 手臂) AR(左) 256x192_lp_net_50_d256d256 是的 0.665 0.903 0.746 0.644 0.697 0.700 0.911 0.771 0.672 0.743 256x192_lp_net_50_d256d256 不 0.644 0.885 0.715 0.619 0.685 0.679 0.898 0.742 0.647 0.725 笔记: 使用翻转测试。 环境 该代码是在Ubuntu 16.
2022-05-22 19:44:39 20.8MB Python
1
随机森林图像matlab代码6D物体检测器 对象检测器能够根据深度相机输入识别3D空间中的对象及其姿势。 它基于以下论文: Andreas Doumanoglou,Rigas Kouskouridas,Sotiris Malassiotis,Tae-Kyun Kim CVPR 2016 但已针对各种项目的需要进行了修改。 因此,可能与本文有所不同,并且不能保证可以准确复制本文提供的结果。 不幸的是,用于运行本文实验的所有参数的值均已被覆盖,但是默认值应接近于它们。 但是,应该搜索最适合感兴趣对象的最佳参数值。 如果您使用此源代码在自己的测试方案上评估该方法,请引用上述论文。 请仔细阅读指南,以正确使用检测器。 建立项目 源代码已在Ubuntu 14.04上进行了测试。 以下是所有必需的依赖项: 博客 GFlags OpenMP的 促进 OpenCV(2.4.10) 聚氯乙烯 VTK(5.10) CUDA LMDB 原虫 咖啡(1.7) 安装了所有必需的库之后,请运行以下命令来构建项目: mkdir build cd build cmake .. make 如果未生成错误,则应该已经创建
2022-05-02 16:03:44 1.81MB 系统开源
1
此仓库实现了我们的ICCV论文“用于3D人体姿势估计的Cross View融合” 快速开始 安装 克隆此仓库,我们将克隆多视图姿势的目录称为$ {POSE_ROOT} 安装依赖项。 下载pytorch imagenet预训练的模型。 请在$ {POSE_ROOT} / models下下载它们,并使它们看起来像这样: ${POSE_ROOT}/models └── pytorch └── imagenet ├── resnet152-b121ed2d.pth ├── resnet50-19c8e357.pth └── mobilenet_v2.pth.tar 可以从以下链接下载它们: : 初始化输出(训练模型输出目录)和日志(张量板日志目录)目录。 mkdir ouput mkdir log 并且您的目录树应该像这样
2022-04-21 20:19:14 84KB Python
1
fashionAI 服装关键点检测 ,给定五种类型的服装,采用人体姿态估计的方法检测关键点。最终结果排名24,CPN模型没有复现很好,略遗憾... 0.效果预览 1.模型 模型结合了HourGlass模型和CPN模型,其中HG堆叠了2个,另外在HG上采样过程的1/2大小的特征图上添加了热点图监督标签。 RGB图像送入两个分支网络分别计算,最后concat二者的特征图,具体结构如图所示。 添加了soft-argmax层,可以由热点图转化到具体的坐标值,用坐标值groundtruth监督学习 2.策略 最多只能使用两个不同参数的模型,检测模型也算。通过检测可以提高目标占比,提升效果。 使用第一级预测结果截取目标,为了防止截取不完整,向外扩展30像素,再训练第二级crop模型。 第一级模型testB线上4.17%,crop之后的模型testB线上4.05%,融合之后3.95%. 3.训练与预测细
1
对象姿势估计演示 本教程将介绍在Unity中使用UR3机械臂执行姿势估计所需的步骤。 您将获得将ROS与Unity集成,导入URDF模型,收集标记的训练数据以及训练和部署深度学习模型的经验。 在本教程结束时,您将能够在Unity中使用机械臂执行拾取和放置操作,并使用计算机视觉感知机器人拾取的对象。 是否想跳过本教程并运行完整的演示? 查看我们的。 是否想跳过本教程,而专注于为深度学习模型收集训练数据? 查看我们的。 注意:该项目是使用Python 3和ROS Noetic开发的。 目录 这一部分包括下载和安装Unity编辑器,设置基本的Unity场景以及导入机器人。 我们将使用软件包导入。 本部分重点介绍使用Unity Computer Vision 进行数据收集的场景。 您将学习如何使用“感知包化器”对场景的各个部分进行随机化,以便在训练数据中创造多样性。 如果您想了解更
2022-03-28 21:14:03 34.49MB robotics unity ros urdf
1