标题“yolov11-pose-pt”暗示了一个与深度学习、计算机视觉密切相关的技术领域,涉及yolov11和pose两个关键概念。yolov11指的是版本号为11的You Only Look Once(YOLO)目标检测算法,这是一种流行的实时对象检测系统,它将目标检测任务视为一个回归问题,直接在图像中预测边界框和类别概率。YOLO的优势在于其能够快速准确地识别和定位图像中的多个对象,而且由于其一次处理整张图像的特性,YOLO比基于区域的传统方法更快。 “Pose”通常指的是姿态,涉及到人体姿态估计问题,即从图像中识别人体的关键点位置,如肩膀、肘部、膝盖等,进而能够重建人体姿态。在计算机视觉领域,人体姿态估计是基础但复杂的任务,它在许多应用中都有广泛的应用,例如运动分析、人机交互、虚拟现实、增强现实等。 “预训练模型”意味着该文件是一个已经经过预训练的神经网络模型,也就是说,在提供给我们的压缩文件中,yolov11-pose模型已经在大规模数据集上进行过训练,其参数已经调整至可以识别和定位图像中的对象和姿态的阶段。这种预训练模型可以为研究者提供一个强大的起点,以进一步微调或适应特定任务或数据集,而无需从零开始训练模型。 在描述中提到的“1024程序员节”是一个特殊的纪念日,它反映了与程序员相关的活动或项目,程序员节往往与技术分享、交流、庆祝相关。在这个背景下,yolov11-pose预训练模型的发布可能是一个特别的贡献,用以纪念程序员节。 关于压缩包内的文件名称列表,我们可以看到文件名称中包含了不同的后缀,如“11x”、“11l”、“11m”、“11s”和“11n”,这些可能指的是不同版本的YOLO模型,各自适应于不同的应用场景和性能要求。例如,“x”可能代表excellent,表示该模型具有高性能;“l”可能代表large,意味着该模型具有较大的网络结构和较高的准确性;而“s”可能代表small,表示模型较小,适合于资源受限的场合。 yolov11-pose-pt的压缩包文件为我们提供了一套在计算机视觉领域,特别是目标检测和姿态估计方面经过预训练的深度学习模型。这些模型能够帮助开发者和研究人员快速部署和应用在各种需要目标检测和姿态识别的项目中,极大地降低了进入门槛和开发成本。
2025-11-25 16:29:28 211.15MB
1
基于 YOLO11n - pose 架构精心训练而成的车牌角点和外包框模型,巧妙融合先进的目标检测与姿态估计算法。它能够精准定位车牌角点,精确勾勒外包框,在复杂交通场景下展现出卓越的稳定性与准确性,为智能交通系统中的车牌识别任务提供有力支撑。
2025-09-14 19:48:29 5.35MB 目标检测
1
内容概要:本文详细介绍了一个使用 C++ 结合 OpenCV 部署 YOLOv11-Pose 姿态估计 ONNX 模型的实例项目。该项目不仅能实现实时的人体姿势估计功能还让用户可根据自身需求调整各种检测指标如置信度门限。同时,文中详细介绍了项目背景、特点、改进方案、必要的注意事项及其具体的实现步骤包括了所需数据的格式和预处理流程并且提供了完整且注释详尽的样例源代码帮助新手开发者快速搭建起自己的实时姿态估计系统。 适用人群:具备一定 OpenCV 操作经验的研究员和软件开发者。 使用场景及目标:在诸如健身指导、舞蹈训练、人机交互等具体情境中自动捕捉与跟踪人体的动作与姿态。 额外说明:由于本方案使用ONNX模型格式,使得将同一模型移植到多种不同软硬件平台变得更加便利。
2025-09-08 10:07:14 36KB OpenCV YOLO
1
yolov8m-pose.pt
2025-07-03 17:00:39 50.77MB
1
人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1
data_3d_h36m.npz,用于姿态识别
2024-05-03 16:02:58 146.08MB 姿态识别 pose
1
“超过100 FPS的多人3D姿势估计的跨视图跟踪”数据集 注意:回购包含本文中使用的数据集,包括Campus,Shelf,StoreLayout1,StoreLayout2。 连同数据一起,我们提供了一些脚本来可视化2D和3D数据,并评估结果。 不包括源代码,因为这是一个商业项目,如果您有兴趣,请在找到更多信息。 数据集 在这里,我们提供了四个数据集,包括 校园: : 架子: : StoreLayout1:由AiFi Inc.提出。 StoreLayout2:由AiFi Inc.提出。 为了方便起见,您可以一键式从找到并下载它们。 数据结构 对于每个数据集,目录的结构组织如下 Campus_Seq1 ├── annotation_2d.json ├── annotation_3d.json ├── calibration.json ├── detection.json ├─
2024-04-16 17:13:16 21KB Python
1
这个项目是一个基于YOLOv8-Pose的姿态识别系统,专门用于识别和分析人体姿态。项目采用了最新的YOLOv8-Pose算法,结合了COCO数据集的8种常见姿态,能够快速准确地识别人体的各种姿态。这个可以作为一个简单的项目案例,后续可以直接换成自己的数据去进行训练。 功能特点: 高效识别:使用了先进的YOLOv8-Pose算法,确保了识别的准确性和效率。 支持多种姿态:能够识别COCO数据集中定义的8种主要姿态。 实时处理能力:项目设计支持实时姿态识别,适用于视频监控、动态分析等场景。 使用方法: 环境要求:详细说明所需的操作系统、依赖库和运行环境。 安装步骤:提供项目安装和配置的具体指导。 运行指南:说明如何启动姿态识别任务,包括命令行参数等。
2024-01-15 10:20:54 30.81MB 数据集
1
Openpose的pth模型文件,包含pose及hands
2023-12-10 23:21:19 634.17MB Openpose
1
研究@ Magic Leap(CVPR 2020,口腔) SuperGlue推理和评估演示脚本 介绍 SuperGlue是在Magic Leap完成的2020 CVPR研究项目。 SuperGlue网络是一个图形神经网络,结合了最佳匹配层,该层经过训练可以对两组稀疏图像特征进行匹配。 此存储库包含PyTorch代码和预训练权重,用于在关键点和描述符之上运行SuperGlue匹配网络。 给定一对图像,您可以使用此存储库在整个图像对中提取匹配特征。 SuperGlue充当“中端”,在单个端到端体系结构中执行上下文聚合,匹配和过滤。 有关更多详细信息,请参见: 全文:PDF: 。 作者: Pa
1