pytorch实现天气分类
2022-05-17 17:08:39 723.57MB pytorch 分类 人工智能 python
1
蓝雾 BlueFog 是一个高性能的分布式训练框架,采用分散优化算法构建。 Bluefog 的目标是使去中心化算法易于使用、容错、对异构环境友好,甚至比使用参数服务器或 ring-allreduce 构建的训练框架更快。 表现 下面的图表代表了在 ResNet50 基准上完成的 BlueFog 的性能。 每台机器有 8 个 V100 GPU(64GB 内存),启用 NVLink,互连通信速度为 25Gbps。 这与您可以在获得的硬件设置相同。 我们测试了计算密集型场景的批量大小为 64 和通信密集型场景的批量大小为 32 的扩展效率。 在图中,黑框代表理想的线性缩放。 据观察,Bluefog 可以实现超过 95% 的扩展效率,而 Horovod 在 128 个 GPU 上以 64 的批量大小达到约 66% 的扩展效率。 对于批量大小为 32 的通信密集型场景,Bluefog 和 Hor
2022-05-17 16:21:24 5.33MB machine-learning asynchronous decentralized mpi
1
数字对抗样本生成 LeNet是一个小型的神经网络结构,仅包含两层卷积层、两个池化层以及三层全连接。该轻量级网络能快速、占内存小、高精确度的解决复杂度比较低的问题,如手写数字识别。本实验要求: (步骤1)用LeNet网络完成手写数字识别任务。 (步骤2)利用对抗样本工具包生成针对该网络的对抗样本。 首先简要介绍了GAN的原理,通俗易懂 我简要实现了这一部分,并且包括每一部分的数字可视化功能,包括LeNet模型的构建,以及对于LeNet的超参数的调节和一些方法,最后也把模型权重保存下来,不用训练也可以直接用。 在步骤二中,生成针对该网络的对抗样本。做了威胁模型,快速梯度符号攻击,定义扰动上限 epsilons,被攻击的模型,FGSM 攻击方式,测试函数的操作 最后启动攻击,得到对抗结果,最后比较准确性 vs Epsilon,就得到最后的实验结果。 所有的介绍和方法和代码都是可以直接运行的
2022-05-17 12:06:10 1.78MB pytorch python 人工智能 深度学习
简述VGG模型,说明其中的结构(描述模型的结构,哪一层是卷积、那一层是池化、那一层是全连接?),并使用VGG模型完成下面图像分类的实验(建议使用Python语言,Pytorch 框架)。图像分类数据集:CIFAR-10,由10个类的60000个32x32彩色图像组成,每个类有6000个图像;有50000个训练样本(训练集)和10000个测试样本(测试集) 分别使用数据集中训练集的1%、10%、50%、80%样本进行训练模型,使用测试样本进行测试,简述步骤并对比使用不同比例的训练样本对于训练结果的影响(即模型训练完成后,使用测试样本输入模型得到的准确率)。随着数据量的增大,观察每一次模型迭代(模型每完成一次迭代,即所有训练样本输入到模型中进行训练更新)所需的计算时间、内存消耗变化,并做比较。分析试验结果,回答下面问题: A. 说明你实验的硬件环境 B. 说明自己程序中使用的是哪种梯度下降算法(随机、批量、全部)? C. 训练过程中你调整了哪些参数,谈谈你的调参过程和调参技巧 D. 当数据量逐渐变大时,你的训练测试过程有没遇到实质性困难?
2022-05-17 12:06:09 80.85MB 图像分类 CIFAR10 pytorch VGG
快速神经风格 :sunset: :rocket: 注意:该代码库已不再维护,请使用提供的pytorch examples存储库中的代码库。 该存储库包含艺术风格转换算法的pytorch实现。 该算法可用于将图像的内容与另一图像的样式混合。 例如,这是一张以彩色玻璃绘画风格渲染的门拱的照片。 该模型使用所述的方法以及。 README中显示的示例的已保存模型可以从下载。 免责声明:此实现也是存储库的一部分。 此存储库中的实现使用预训练的Caffe2 VGG,而pytorch示例存储库实现使用预训练的Pytorch VGG。 这两个VGG具有不同的预处理,这导致不同的--content-weight和--style-weight参数。 样式化的输出图像看起来也略有不同。 要求 该程序是用Python编写的,并使用 , 。 GPU不是必需的,但可以显着提高速度,尤其是在训练新模型时。 可以使用保存的模型在笔记本电
2022-05-17 11:18:21 2.32MB deep-learning pytorch neural-style Python
1
AICity-reID 2020(第二轨) 在此存储库中,我们将2020 re-id曲目的第一名提交(百度提交) 我们融合了在Paddlepaddle和Pytorch上训练的模型。为了说明它们,我们分别提供了以下两个训练部分。 我们在包括培训代码。 我们在包括培训代码。 表现: AICITY2020 Challange Track2排行榜 队名 地图 关联 百度-UTS(我们的) 84.1% 瑞亚爱 78.1% DMT 73.1% 提取的特征,相机预测和方向预测: 我已经更新了功能。您可以从或下载 ├── final_features/ │ ├── features/ /* extracted pytorch feature │ ├── pkl_feas/ /* extracted paddle feat
2022-05-17 00:01:04 8.91MB pytorch vehicle paddlepaddle vehicle-reid
1
PyTorch的官方实现: 深度学习中域内不确定性估计和集合的陷阱,ICLR'20 / / // 海报视频(5分钟) 环境设定 以下内容允许使用创建并运行具有所有必需依赖项的python环境: conda env create -f condaenv.yml conda activate megabayes 日志,图表,表格,预训练砝码 在文件夹中,我们提供: 保存的日志以及所有计算结果 ipython笔记本示例,可重现绘图,表格并计算深整体等效(DEE)分数 某些模型的预训练权重可以在以下: 和等。这些权重还可以通过通过命令行界面下载: pip3 install wldhx.yadisk-direct % ImageNet curl -L $(yadisk-direct https://yadi.sk/d/rdk6ylF5mK8ptw?w=1) -o deepens_imag
2022-05-16 19:57:23 10.79MB deep-learning pytorch uncertainty ensembles
1
Yolo v4用于pytorch,tensorflow渴望模式和onnx(通过Trident api) 感谢 所有预先准备好的模型权重和cfg均来自官方网站: 还要感谢Ultralytics的项目,它确实很棒而且很有帮助。 yolo v4的搜索结果 让我们看看有关yolo v4(pytorch后端)的出色性能!! 更新(5/3):增强小物品 在yolo v4中,缺少缺少对小物件的检测的缺点。 我试图解决短缺问题。 我发现解决此问题的最佳方法是在stride = 8 Yolo Layer(76 * 76)中修改对象 您所需要做的就是设置YoloLayer small_item_enhance = True(仅效果76 * 76 head) for module in detector.model.modules(): if isinstance(module,Yolo
2022-05-16 19:00:41 15.94MB pytorch yolo Python
1
使用PyTorch在GPU上进行MIL-NCE端到端HowTo100M培训 此存储库包含CVPR'20论文的开源PyTorch分布式培训代码:[1]。 [1]中的原始代码库依赖于Google和DeepMind的内部工具以及TPU v3加速器的使用,这使其难以按原样发布。 相反,此存储库使用PyTorch / ffmpeg和合理数量的GPU提供了[1]的实现。 培训代码在法国公共AI集群(请参阅下面的致谢)。 它经过专门设计,可在基于SLURM的集群管理上运行,以进行多节点分布式培训,但可以轻松地针对任何其他集群管理系统进行修改。 本文的开源PyTorch实现有一些细微的差异,例如: 使用余弦学习速率衰减代替[1]中描述的逐步衰减。 没有在不同的GPU和节点之间共享批处理规范化统计信息,因为在GPU上执行此类操作比TPU慢得多。 使用略微不同的时空训练视频分辨率的输入视频剪辑。
2022-05-16 17:08:20 22.02MB Python
1