pytorch-ensembles:深度学习中域内不确定性估计和组合的陷阱,ICLR 2020

上传者: 42112685 | 上传时间: 2022-05-16 19:57:23 | 文件大小: 10.79MB | 文件类型: ZIP
PyTorch的官方实现: 深度学习中域内不确定性估计和集合的陷阱,ICLR'20 / / // 海报视频(5分钟) 环境设定 以下内容允许使用创建并运行具有所有必需依赖项的python环境: conda env create -f condaenv.yml conda activate megabayes 日志,图表,表格,预训练砝码 在文件夹中,我们提供: 保存的日志以及所有计算结果 ipython笔记本示例,可重现绘图,表格并计算深整体等效(DEE)分数 某些模型的预训练权重可以在以下: 和等。这些权重还可以通过通过命令行界面下载: pip3 install wldhx.yadisk-direct % ImageNet curl -L $(yadisk-direct https://yadi.sk/d/rdk6ylF5mK8ptw?w=1) -o deepens_imag

文件下载

资源详情

[{"title":"( 66 个子文件 10.79MB ) pytorch-ensembles:深度学习中域内不确定性估计和组合的陷阱,ICLR 2020","children":[{"title":"pytorch-ensembles-master","children":[{"title":"models","children":[{"title":"resnets_imagnet.py <span style='color:#111;'> 13.19KB </span>","children":null,"spread":false},{"title":"vgg_vi.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"wide_resnet_vi.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"wide_resnet.py <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"preresnet_vi.py <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"rsnet50_imagnet_vi.py <span style='color:#111;'> 8.34KB </span>","children":null,"spread":false},{"title":"vgg.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"preresnet.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"varinf.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"ens","children":[{"title":"ens-dropout.py <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"ens-fge.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"ens-kfacl.py <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"ens-deepens.py <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"ens-vi.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"ens-swag.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"ens-csgld.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"ens-onenet.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"ens-sse.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"train","children":[{"title":"train_fge.sh <span style='color:#111;'> 904B </span>","children":null,"spread":false},{"title":"train_imagenet.sh <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"cifar","children":[{"title":"fge_pretrain.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"train_vi.py <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"sse_mcmc_train.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"swag_train.py <span style='color:#111;'> 8.77KB </span>","children":null,"spread":false},{"title":"fge_train.py <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"swag_sample.py <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"imagenet","children":[{"title":"train_imagenet.py <span style='color:#111;'> 16.42KB </span>","children":null,"spread":false},{"title":"train_vi_imagenet.py <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"train_imagenet_sse.py <span style='color:#111;'> 16.34KB </span>","children":null,"spread":false},{"title":"train_imagenet_fge.py <span style='color:#111;'> 17.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_sse_mcmc.sh <span style='color:#111;'> 844B </span>","children":null,"spread":false},{"title":"train_cifar.sh <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"train_swag.sh <span style='color:#111;'> 963B </span>","children":null,"spread":false}],"spread":true},{"title":"metrics.py <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"condaenv.yml <span style='color:#111;'> 7.87KB </span>","children":null,"spread":false},{"title":"kfacl","children":[{"title":"utils.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"laplace.py <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"fge_utils.py <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"snapshot_data.py <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"snapshot_utils.py <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"snapshot_transforms.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"swag_model.py <span style='color:#111;'> 9.47KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"countmodels.py <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"swag_utils.py <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"notebooks","children":[{"title":"pdf","children":[{"title":"ImageNet-['ResNet50']-['ll'].pdf <span style='color:#111;'> 17.25KB </span>","children":null,"spread":false},{"title":"ImageNet-acc-vs-ll-ts.pdf <span style='color:#111;'> 20.38KB </span>","children":null,"spread":false},{"title":"cost-vs-dee.pdf <span style='color:#111;'> 79.64KB </span>","children":null,"spread":false},{"title":"barplot-err.pdf <span style='color:#111;'> 15.99KB </span>","children":null,"spread":false},{"title":"barplot-cll.pdf <span style='color:#111;'> 16.35KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"cost-vs-dee-mean.pdf <span style='color:#111;'> 29.18KB </span>","children":null,"spread":false},{"title":"barplot-dee.pdf <span style='color:#111;'> 11.60KB </span>","children":null,"spread":false},{"title":"CIFAR100-side-by-side-befor-and-after-calibraion-ll.pdf <span style='color:#111;'> 71.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"tabsles.ipynb <span style='color:#111;'> 87.68KB </span>","children":null,"spread":false},{"title":"logs.zip <span style='color:#111;'> 8.81MB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"plots.ipynb <span style='color:#111;'> 658.04KB </span>","children":null,"spread":false},{"title":"DEE camera ready plots.ipynb <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明