硬件组态和软件组态是自动化控制系统中2个重要方面。硬件组态保证各硬件设备间正确而可靠的连接,软件组态可以把设备的运行状态和传感器采集回来的数值反映到人机交互显示屏的画面上。研究设计一种数据通信方法,来实现触摸屏和可编程逻辑控制器之间的可靠数据传输。本设计已在煤矿主排水系统得以验证与应用。
2025-05-10 08:25:46 506KB 可编程逻辑控制器
1
北航并行课程作业: 使用MPI 实现一个矩阵并行乘法程序,要求矩阵大小不小于8000*8000,且元素为双精度浮点数(double)类型;并在多核系统中,比较并行程序与串行程序的加速比;同时注意排除数据准备时间作程序运行时间,使程序有并行进程个数可变的可拓展性。 在当今的高性能计算领域,随着处理器核心数量的不断增多,如何有效地利用这些核心以提高程序运行效率,成为了研究的热点问题。本实验的核心在于掌握消息传递接口(MPI)这一并行编程工具,实现一个高效的并行矩阵乘法算法,并对其性能进行评估。具体来说,这项工作涉及以下几个方面: MPI作为一种广泛使用的并行编程模型,允许程序员在多个处理器之间进行数据传输和任务协调。MPI并行程序设计的基础是进程通信。程序中的每个进程都拥有自己的内存空间,通过发送和接收消息与其他进程交互。本实验中,矩阵乘法的并行化依赖于进程间的有效通信。 矩阵乘法是数值计算中的基础问题,其算法的效率直接影响到相关应用的性能。在传统的串行计算中,矩阵乘法的时间复杂度为O(n^3),当矩阵规模较大时,计算变得非常耗时。通过并行化计算,可以将矩阵分割成更小的块,在多个处理器上并行处理,从而降低整体计算时间。 本实验对矩阵的大小有具体要求,即不小于8000*8000,并且矩阵元素类型为双精度浮点数(double)。这要求开发者需要处理大规模的数据,并对内存管理及通信开销有精细的控制。矩阵乘法算法通常包括分块矩阵乘法和稀疏矩阵乘法等策略,而在本实验中,可能需要设计一种适合并行处理的分块策略,确保负载均衡,减少通信开销。 在多核系统中,程序的加速比是衡量并行程序性能的重要指标。加速比定义为串行程序运行时间与并行程序运行时间的比值。一个理想的并行程序应该能够在增加处理器数量时,保持或接近线性加速比。然而,由于诸如通信延迟、同步开销等并行计算的固有开销,实际上很难达到理论上的最佳加速比。实验需要关注并记录并行程序在不同处理器核心数目下的实际加速比,并分析可能影响加速比的各种因素。 此外,为了更准确地衡量并行程序的性能,需要排除数据准备时间,只考虑程序实际运行时间。在并行程序中,数据准备可能包括数据的分块、分发和收集等步骤。实验中应当设计相应的机制,以确保这部分时间不计入程序的运行时间中。 为了实现上述目标,本实验需要编写源代码,并在具备MPI环境的多核系统上编译和运行。最终需要提交的是一个包含完整程序设计报告的压缩包。报告应当详细描述实验的设计思路、实现过程、测试结果和性能分析。同时,为了验证程序的可拓展性,报告中应当包含在不同并行进程个数下的性能测试数据。 本次实验不仅仅是对MPI编程技术的实践,更是对并行计算性能分析和优化能力的综合考察。通过本实验,学生可以深入理解并行编程模型,掌握大规模数据处理的方法,并获得宝贵的并行计算经验。
2025-05-08 13:47:33 268KB
1
实验一 基于 MPI 实现埃拉托斯特尼筛法及性能优化 一.实验目的 本实验旨在让学生掌握分布式并行计算的基本概念和MPI(Message Passing Interface)编程技术,通过实现埃拉托斯特尼筛法,理解并行计算在解决大规模计算问题时的优势。同时,学生将学习如何进行并行程序的性能分析与优化,包括加速比、并行效率的计算,并对实验结果进行深入解读。 二.实验内容 1. 学习MPI的基本通信机制,包括进程创建、进程间消息传递等。 2. 编写并运行基于MPI的埃拉托斯特尼筛法程序,实现分布式环境下的素数筛选。 3. 对并行程序进行性能分析,包括计算加速比和并行效率。 4. 根据性能分析结果,对程序进行优化,提高并行效率。 三.实验要求 1. 使用C或Fortran语言,结合MPI库编写埃拉托斯特尼筛法的并行程序。 2. 设计合理的数据分配策略,如按块分配,确保并行计算的负载均衡。 3. 提供程序运行结果的截图,包括不同进程数下的运行时间,展示加速比和并行效率曲线。 4. 分析并解释加速比的变化趋势和并行效率降低的原因,探讨可能的优化方案。 四.实验报告 实验报告应包含以下内容: 1. 实验环境介绍:操作系统、MPI版本、编译器等。 2. 算法描述:简述埃拉托斯特尼筛法的原理。 3. 并行设计:详细说明并行化过程中数据的分配、同步和通信机制。 4. 实验结果:展示并解释不同进程数下的运行时间、加速比和并行效率曲线。 5. 性能分析:分析并行程序的性能瓶颈,解释加速比变化的原因。 6. 优化策略:提出并实施优化方案,对比优化前后的性能差异。 附录 1 MPI 环境配置 这部分提供配置MPI开发环境的步骤,包括安装MPI库、设置环境变量等。 附录 2 埃拉托斯特尼素数筛选原理 详细阐述埃拉托斯特尼筛法的数学原理,解释如何通过排除倍数来找到素数。 附录 3 埃拉托斯特尼筛法 MPI 实现 1. 数据块分配方法:描述如何将待筛选的整数范围划分给各个进程,确保工作负载的均衡。 2. 初始版并行代码代码说明:解析并行代码的结构,解释关键函数和通信过程。 附录 4 优化思路 1. 去掉待筛选偶数:由于所有偶数都不是素数(除了2),优化方案可以避免处理偶数,节省计算资源。 2. 其他可能的优化:如减少不必要的通信,利用局部信息减少全局同步等。 通过本实验,学生不仅能掌握并行计算的基本技能,还能培养解决实际问题的能力,为后续更复杂的并行算法设计和优化打下基础。
2025-04-08 20:07:52 892KB 分布式
1
从prodave6.2安装后中的文件找到,介绍各个参数的作用。
2024-09-15 18:43:03 382KB Simatic Prodave
1
共轭梯度法(Conjugate Gradient Method)是一种在数值线性代数中解决大型对称正定矩阵线性系统的重要方法。它适用于求解大型稀疏矩阵问题,因为其迭代次数通常与矩阵的条件数相关,对于好的矩阵结构,如对角主导,其效率很高。在偏微分方程(PDEs)的数值解法中,共轭梯度法经常被用于求解线性化的方程组。 偏微分方程是描述许多物理现象的关键工具,如热传导、流体动力学等。在计算机模拟中,将连续域离散化为网格,通常采用有限差分方法(Finite Difference Method)来近似PDEs的解。五点法是一种有限差分方法,用于二维空间中的二阶偏微分方程,如泊松方程,通过在每个网格节点处的相邻五个点上定义差分表达式来逼近二阶导数。 在这个特定的实现中,描述提到了从无并行版本升级到MPI并行版本。MPI(Message Passing Interface)是分布式内存并行计算的一种标准,它允许在多台计算机或多个处理器之间交换信息。在解决大型计算问题时,如大规模的偏微分方程求解,使用MPI可以将任务分解到多个计算节点上,显著提高计算速度。 表达式模板(Expression Templates)是C++编程中一种优化技术,用于在编译时处理数学表达式,避免了不必要的临时对象创建,提高了代码执行效率。在科学计算库如Eigen中,表达式模板被广泛应用,使得在处理大型矩阵和向量运算时能保持高效。 结合这些标签和描述,这个C++程序很可能是使用MPI进行并行化,通过五点法有限差分对偏微分方程进行离散化,然后利用共轭梯度法求解由此产生的线性系统。同时,为了优化性能,可能采用了表达式模板技术来处理矩阵和向量操作。文件"ass5_final"可能是项目代码的最终版本,包含了这些算法和方法的实现。 理解并实现这样的程序需要扎实的数值分析基础,对C++编程、MPI并行计算以及线性代数的知识有深入的了解。调试和优化这样的代码也需要考虑内存访问模式、并行效率和计算精度等因素。对于希望深入学习科学计算和并行计算的学者来说,这是一个有价值的实践项目。
1
三维可压缩流场MPI+OpenMP混合并行算法及应用研究,许啸,王学德,在多核CPU集群并行体系结构下,采用MPI+OpenMP的混合并行算法,对高速可压缩流场进行数值模拟,并在计算时间上与MPI算法进行比较。流�
2024-01-16 18:15:26 522KB 首发论文
1
MPI和CUDA在多层快速多极子中的应用,李朕,陆卫兵,多层快速多极子(MLFMA)技术是计算电磁学的分支。采用多种并行技术对多层快速多极子技术进行并行加速,是提高其计算能力行之有效�
2024-01-14 09:52:22 433KB 首发论文
1
3D人体姿态估计数据集,含2D和3D关键点信息。
2023-12-10 21:54:12 521.43MB 人工智能 姿态估计
1
高性能计算导论实验3,矩阵乘法基于MPI的并行实现及优化,分别采用 MPI 点对点通信和 MPI 集合通信实现矩阵乘法中的进程之间通信,优化矩阵乘法
2023-07-03 08:22:29 1.15MB 矩阵乘法 高性能计算 MPI
1
一个MPI程序,用来解决热分布问题。 热分布是一个经典的并行计算问题。 源代码还附上了测试结果和说明文档。
2023-06-13 14:41:15 71KB 3d_heat_mpi mpi热分布 mpi_热 mpi_热分布