类激活图 通过可视化对于这些模型的预测(或视觉解释)“重要”的输入区域,可以使基于卷积神经网络(CNN)的模型更加透明的技术。 使用VinBigData图像和Inception架构的示例
1
RegNet 介绍 在这项工作中,我们提出了一种通过学习方法来解决非刚性图像配准的方法,而不是通过对预定义的相异性度量进行迭代优化来解决。 我们设计了卷积神经网络(CNN)架构,与所有其他工作相反,该架构直接从一对输入图像中估计位移矢量场(DVF)。 提议的RegNet使用大量的人工生成的DVF进行了训练,没有明确定义相异性度量标准,并且以多种比例集成了图像内容,从而为网络配备了上下文信息。 在测试时,与当前的迭代方法相反,非刚性配准是一次完成的。 引文 [1] , , , , , , 和 ,2019年。。 arXiv预印本arXiv:1908.10235。 [2] , , , , IvanaIšgum和Marius Staring ,2017年9月。 使用多尺度3D卷积神经网络进行非刚性图像配准。 在医学图像计算和计算机辅助干预国际会议上(第232-239页)。 湛
1
组织病理学检测 创建了一种算法,以识别从较大的数字病理扫描中获取的小图像斑块中的转移癌。 该比赛的数据是对PatchCamelyon(PCam)基准数据集的略微修改版本 动机 乳腺癌的临床诊断最好通过活检来实现。 病理学家通过在显微镜下手动检查组织切片来进行诊断。 但是,传统的诊断系统需要专业知识,只有经验丰富的病理学家才能准确地确定肿瘤组织。 当前,在印度的各个农村地区,人们无法获得良好的医疗保健设施。 另外,农村地区没有新的先进设备,因此甚至有可能无法正确诊断患者。 农村地区医疗状况不佳的主要原因之一是缺乏经验丰富的医生。 数据集 该研究使用的数据集是PatchCamelyon(PCam)[21],[22]的略微修改版本。由于其概率抽样,原始PCam数据集包含重复图像,但是此版本不包含重复图像。 该数据集是开源的,可以从( )下载。 数据集包含超过220K张RGB图像,尺寸为96x
1
医学影像中的机器学习--U-Net 是用于生物图像分割的卷积神经网络(CNN)。 为了保留更精细的特征图,使用了跳过连接来补充更深层中的数据。 在这项工作中,将相同的体系结构用于MRI脑部扫描,以预测一种给予另一种的方式。 这是通过将以两种不同方式扫描的原始MRI体数据切成可在网络上进行训练的2D图像来完成的。 该网络是使用 (用于CNN的MATLAB工具箱)实现的。
1
Pytorch-图像分类 使用pytorch进行图像分类的简单演示。 在这里,我们使用包含43956 张图像的自定义数据集,属于11 个类别进行训练(和验证)。 此外,我们比较了三种不同的训练方法。 从头开始培训,微调的convnet和convnet为特征提取,用预训练pytorch模型的帮助。 使用的模型包括: VGG11、Resnet18 和 MobilenetV2 。 依赖关系 Python3,Scikit学习 Pytorch, PIL Torchsummary,Tensorboard pip install torchsummary # keras-summary pip install tensorboard # tensoflow-logging 注意:在训练之前将库更新到最新版本。 怎么跑 下载并提取训练数据集: 运行以下脚本进行训练和/或测试 python t
1
用于真实图像超分辨率的深循环生成对抗性残差卷积网络(SRResCycGAN) 网络的官方PyTorch实现,如论文。 这项工作以高x4放大系数参加了挑战赛道3。 抽象的 最近基于深度学习的单图像超分辨率(SISR)方法主要是在干净的数据域中训练其模型,其中低分辨率(LR)和高分辨率(HR)图像来自无噪声设置(相同域)到双三次降采样假设。 但是,这种降级过程在实际环境中不可用。 我们考虑到深度循环网络结构,以保持LR和HR数据分布之间的域一致性,这是受CycleGAN在图像到图像翻译应用程序中最近成功的启发。 通过以端对端方式从LR到HR域转换的生成对抗网络(GAN)框架进行训练,我们提出了超分辨率残留循环生成对抗网络(SRResCycGAN)。 我们在定量和定性实验中证明了我们提出的方法,该方法很好地推广到了真实图像的超分辨率,并且很容易部署到移动/嵌入式设备中。 此外,我们在AIM 2
1
演示代码(请参阅jupyter笔记本): 使用深度卷积自动编码器对地震信号进行非监督(自我监督)区分 您可以从这里获取论文: 连结1: 连结2: 您可以从此处获取训练数据集: 参考: Mousavi, S. M., W. Zhu, W. Ellsworth, G. Beroza (2019). Unsupervised Clustering of Seismic Signals Using Deep Convolutional Autoencoders, IEEE Geoscience and Remote Sensing Letters, 1 - 5, doi:10.1109/LGRS.2019.2909218.
1
使用生成式对抗学习的3D医学图像分割很少 该存储库包含我们在同名论文中提出的模型的tensorflow和pytorch实现: 该代码在tensorflow和pytorch中都可用。 要运行该项目,请参考各个自述文件。 数据集 选择了数据集来证实我们提出的方法。 它包含10个标记的训练对象和13个未标记的测试对象的3D多模式脑MRI数据。 我们将这10个标记的训练数据分为两个模型的训练,验证和测试图像。(例如,2,1和7)13个未标记的测试图像中的其余部分仅用于训练基于GAN的模型。 数据集也用于测试我们提出的模型的鲁棒性。 它包含3种模式(T1加权,T1加权反转恢复和FLAIR)。 原始数据
1
深度学习 该文件夹包含我的各种AI和机器学习项目的深度学习模型。 长短期记忆(LSTM)卷积神经网络(CNN)ResNet50
1
使用PyTorch对预训练的卷积神经网络进行微调。 产品特点 可以访问ImageNet上经过预训练的最受欢迎的CNN架构。 自动替换网络顶部的分类器,使您可以使用具有不同类数的数据集训练网络。 使您可以使用任何分辨率的图像(不仅限于在ImageNet上用于训练原始模型的分辨率)。 允许添加一个Dropout层或一个自定义池层。 支持的架构和模型 从包中: ResNet( resnet18 , resnet34 , resnet50 , resnet101 , resnet152 ) ResNeXt( resnext50_32x4d , resnext101_32x8d ) Dens
1