yeap16:CT图像骨分割
的3D创新实验室提供的“代码库。 此代码随附标题为:
“使用卷积神经网络进行医学增材制造的骨骼的CT图像分割”
目前正在审查中。
目的
CT扫描的骨分割是医疗计划中必不可少的步骤。 骨结构的确切厚度,方向和位置对于制造患者特定的结构(例如手术指南和植入物)是必不可少的。 在骨骼分割期间,医学图像中的每个像素都被分类为“骨骼”或“背景”。 不幸的是,当前的算法要么缺乏鲁棒性和可靠性,要么需要乏味的手动交互( )。 因此,该存储库包含一个全自动的卷积神经网络(CNN),以执行CT扫描的骨骼分割。
模型训练
使用3例先前在Vrije大学医学中心接受治疗的患者的CT扫描对CNN进行了培训。 根据经验丰富的医学工程师的知识,CT扫描的每个像素都被标记为“骨头”或“背景”。 随机选择了500,000个像素,以在这些选定像素周围创建33x33的轴向补丁。 这些补丁随后
1