FewShot_GAN-Unet3D:本文的Tensorflow实现:使用生成式对抗学习的少量镜头3D多模式医学图像分割-源码

上传者: 42126865 | 上传时间: 2021-09-27 16:33:52 | 文件大小: 1.15MB | 文件类型: ZIP
使用生成式对抗学习的3D医学图像分割很少 该存储库包含我们在同名论文中提出的模型的tensorflow和pytorch实现: 该代码在tensorflow和pytorch中都可用。 要运行该项目,请参考各个自述文件。 数据集 选择了数据集来证实我们提出的方法。 它包含10个标记的训练对象和13个未标记的测试对象的3D多模式脑MRI数据。 我们将这10个标记的训练数据分为两个模型的训练,验证和测试图像。(例如,2,1和7)13个未标记的测试图像中的其余部分仅用于训练基于GAN的模型。 数据集也用于测试我们提出的模型的鲁棒性。 它包含3种模式(T1加权,T1加权反转恢复和FLAIR)。 原始数据

文件下载

资源详情

[{"title":"( 61 个子文件 1.15MB ) FewShot_GAN-Unet3D:本文的Tensorflow实现:使用生成式对抗学习的少量镜头3D多模式医学图像分割-源码","children":[{"title":"FewShot_GAN-Unet3D-master","children":[{"title":"tensorflow","children":[{"title":"preprocess","children":[{"title":"__pycache__","children":[{"title":"preprocess.cpython-36.pyc <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"preprocess.py <span style='color:#111;'> 14.24KB </span>","children":null,"spread":false}],"spread":true},{"title":"experiments","children":[{"title":"unet3D","children":[{"title":"testing_unet.py <span style='color:#111;'> 7.68KB </span>","children":null,"spread":false},{"title":"model_unet.py <span style='color:#111;'> 10.99KB </span>","children":null,"spread":false},{"title":"main_unet.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"proposed_model","children":[{"title":"test.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 15.39KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"images","children":[{"title":"Subject9.jpg <span style='color:#111;'> 104.79KB </span>","children":null,"spread":false},{"title":"train1.png <span style='color:#111;'> 143.19KB </span>","children":null,"spread":false},{"title":"train2.png <span style='color:#111;'> 143.04KB </span>","children":null,"spread":false},{"title":"Subject10.jpg <span style='color:#111;'> 104.85KB </span>","children":null,"spread":false},{"title":"comparison.png <span style='color:#111;'> 328.59KB </span>","children":null,"spread":false},{"title":"ganwar_mod.jpg <span style='color:#111;'> 220.60KB </span>","children":null,"spread":false},{"title":"Diagram.jpg <span style='color:#111;'> 180.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"lib","children":[{"title":"utils.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"operations.py <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-36.pyc <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"operations.cpython-36.pyc <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"Readme.txt <span style='color:#111;'> 48B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"pytorch","children":[{"title":"pretrained_weights","children":[{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"graphs","children":[{"title":"models","children":[{"title":"__init__.py <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"custom_functions","children":[{"title":"weight_norm.py <span style='color:#111;'> 8.16KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"generator.py <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"discriminator.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"losses","children":[{"title":"__init__.py <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"gaussian_nll.py <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"cross_entropy.py <span style='color:#111;'> 683B </span>","children":null,"spread":false},{"title":"example.py <span style='color:#111;'> 401B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"weights_initializer.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"misc.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"dirs.py <span style='color:#111;'> 424B </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 10.11KB </span>","children":null,"spread":false},{"title":"recompose.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"agents","children":[{"title":"base.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"normal_gan.py <span style='color:#111;'> 12.95KB </span>","children":null,"spread":false},{"title":"supervised_baseline.py <span style='color:#111;'> 10.11KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"bad_gan.py <span style='color:#111;'> 13.72KB </span>","children":null,"spread":false},{"title":"fm_gan.py <span style='color:#111;'> 13.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"configs","children":[{"title":"unet.json <span style='color:#111;'> 840B </span>","children":null,"spread":false},{"title":"fmgan.json <span style='color:#111;'> 864B </span>","children":null,"spread":false},{"title":"badgan.json <span style='color:#111;'> 956B </span>","children":null,"spread":false}],"spread":true},{"title":"main.py <span style='color:#111;'> 773B </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"dataloader.py <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 394B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":".keep <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明