人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
深度学习RNN(循环神经网络)是人工智能领域中一种重要的序列模型,尤其在自然语言处理、语音识别和时间序列预测等任务中表现出色。RNNs以其独特的结构,能够处理变长输入序列,并且能够在处理过程中保留历史信息,这使得它们在处理具有时间依赖性的数据时特别有效。 LSTM(长短期记忆网络)是RNN的一种变体,解决了传统RNN在处理长距离依赖时可能出现的梯度消失问题。LSTM通过引入门控机制(输入门、遗忘门和输出门)来控制信息流,从而更好地学习长期依赖性。LSTM在NLP中的应用包括机器翻译、情感分析、文本生成等;在音频处理中,它可以用于语音识别和音乐生成。 1. LSTM应用:这部分的论文可能涵盖了LSTM在不同领域的实际应用,比如文本分类、情感分析、机器翻译、语音识别、图像描述生成等。这些论文可能会详细阐述如何构建LSTM模型,优化方法,以及在特定任务上相比于其他模型的性能提升。 2. RNN应用:RNN的应用广泛,除了LSTM之外,还有GRU(门控循环单元)等变体。这部分的论文可能会探讨基本RNN模型在序列标注、语言建模、时间序列预测等任务上的应用,同时可能对比RNN和LSTM在性能和训练效率上的差异。 3. RNN综述:这部分论文可能会提供RNN的发展历程,关键概念的解释,以及与其它序列模型(如Transformer)的比较。它们可能会讨论RNN在解决梯度消失问题上的局限性,以及后来的改进策略,如双向RNN、堆叠RNN等。 4. LSTM综述:这部分论文将深入探讨LSTM的内部工作机制,包括其门控机制的数学原理,以及在不同任务中如何调整参数以优化性能。可能还会讨论一些高级主题,如多层LSTM、双向LSTM、以及LSTM在网络架构中的创新应用,如Attention机制的结合。 在毕业设计中,这些资源对于理解RNN和LSTM的工作原理,以及如何在实际项目中应用它们非常有价值。通过阅读这些经典论文,可以了解最新的研究进展,掌握模型优化技巧,并为自己的研究提供理论支持。无论是初学者还是资深研究人员,这个压缩包都能提供丰富的学习材料,有助于深化对深度学习中RNN和LSTM的理解。
2024-08-06 10:23:45 64.46MB 深度学习 毕业设计 lstm
1
足球预测 这是用于预测足球比赛(世界杯,欧洲杯和美洲杯)比赛结果的统计预测模型。 该模型在按进攻和防守强度逐场对球队进行评级后,被称为顺序进攻-防守(ODM-S)。 它基于数学家Anjela Govan,Amy Langville和Carl Meyer的。 我们讨论了它是如何工作的以及如何解释预测。 它的准确性和内部运作在。 这个怎么运作 第1步:为团队评分 ODM-S首先根据攻击和防御实力来评估团队。 得分目标是攻击强度的度量,而失落的目标是防御强度的度量。 评分会逐场更新。 通常,一支球队的得分在获胜后会增加,而在输掉后会下降,但并非总是如此,因为要考虑到日程安排和主场优势。 当一支高评价的球队在主场与弱评价的球队取得4-3的胜利时,其评价会下降,而对手的评价会上升。 为了使评分反映球队如何与最佳球员比赛,该模型仅对那些可能出现这些球员的比赛中的球队进行评分,例如锦标赛预选赛和锦标赛
2024-07-26 12:04:49 117.69MB R
1
MATLAB-RNN预测.rar
2024-05-29 18:58:15 5KB matlab
1
[ML] Pytorch自学实战项目其4:基于学习(RNN)算法的车辆状态估计:训练模型,推理代码,数据源
2024-05-19 16:38:25 8.27MB pytorch pytorch
1
NumpyDL:Numpy深度学习库 内容描述 NumpyDL是: 基于纯Numpy / Python 对于DL教育 特征 其主要特点是: 纯洁的脾气暴躁 原生于Python 基本支持自动区分 提供了常用的模型:MLP,RNN,LSTM和CNN 几个AI任务的示例 对于玩具聊天机器人应用 文献资料 可用的在线文档: 最新文件 开发文档 稳定文档 可用的离线PDF: 最新PDF 安装 使用pip安装NumpyDL: $ > pip install npdl 从源代码安装: $ > python setup.py install 例子 NumpyDL提供了一些AI任务示例: 句子分类 示例/lstm_sentence_classification.py中的LSTM 例子中的CNN / cnn_sentence_classification.py mnist手写识
2024-02-23 17:06:34 16.61MB deep-neural-networks deep-learning
1
1.本项目基于Google的Magenta平台,它采用随机森林分类器来识别图片的情感色彩,接着项目使用递归神经网络(RNN)来生成与图片情感相匹配的音乐,最后通过图形用户界面(GUI)实现可视化结果展示。 2.项目运行环境:包括 Python 环境和Magenta环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。其中数据集MIDI下载地址为http://midi.midicn.com/,数据集图片在花瓣网收集获取地址为https://huaban.com/boards/60930738/。音乐模型包含欢快和安静两类MIDI文件各100个,图片包含欢快和安静两类各250张,格式为.jpg;模型构建部分包括图片情感分析和复调音乐模型;在定义模型架构和编译之后,使用训练集训练模型,使模型对图片的情感进行分类。 博客:https://blog.csdn.net/qq_31136513/article/details/134014454
2023-12-17 20:49:34 201.68MB python tensorflow 随机森林 人工智能
1
MATLAB算法-循环神经网络(RNN)算法详解,附代码
2023-11-28 20:38:01 258KB matlab
1
TensorFlow中的深度学习模型 该存储库包含使用实现几种深度学习模型的jupyter笔记本。 每个笔记本均包含有关每种型号的详细说明,希望可以简化所有步骤。 笔记本在Python 3.6,Tensorflow 1.8中运行 楷模:
2023-05-08 23:00:21 270KB python machine-learning deep-learning notebook
1
matlab迭代阈值代码Sista-rnn 论文代码 [1] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“通过展开迭代阈值来建立顺序网络以进行顺序稀疏恢复”,ICASSP 2017,美国路易斯安那州新奥尔良,2017年3月 [2] S. Wisdom,T。Powers,J。Pitton和L. Atlas,“使用顺序稀疏恢复的可解释的递归神经网络”,arXiv预印本arXiv:1611.07252,2016年。在NIPS 2016复杂可解释机器学习研讨会上发表系统公司,西班牙巴塞罗那,2016年12月 通过以下方式包含代码: Stephen J. Wright,Robert D. Nowak和Mario Figueiredo,可从以下网站获得 Salman Asif,可从以下途径获得 Martin Arjovsky,Amar Shah和Yoshua Bengio,可从以下网站获得 要复制论文的结果,请按照下列步骤操作: 下载可从以下网站获得的Caltech-256数据集 执行“ run_supervised.sh”脚本。 这将为所有其他功能加载和预处理Ca
2023-04-20 01:00:03 370KB 系统开源
1