全卷积网络的端到端目标检测 该项目在PyTorch上提供了“”的实现。 本文中的实验是在内部框架上进行的,因此我们在上重新实现了它们,并报告了以下详细信息。 要求 scipy> = 1.5.4 开始使用 在本地安装cvpods(需要cuda进行编译) python3 -m pip install ' git+https://github.com/Megvii-BaseDetection/cvpods.git ' # (add --user if you don't have permission) # Or, to install it from a local clone: git clone https://github.com/Megvii-BaseDetection/cvpods.git python3 -m pip install -e cvpods # Or, pip
2021-12-14 11:08:25 827KB computer-vision object-detection Python
1
异常检测 使用自动编码器的单变量时间序列异常检测教程 自动编码器在德累斯顿的杜托·阿诺玛利检测站
2021-12-14 10:51:49 76.58MB tutorial time-series detection deeplearning
1
脑肿瘤检测脑核磁共振成像 Brain MRI Images for Brain Tumor Detection_datasets.txt
2021-12-13 23:00:52 309B 数据集
1
【名称】:Signal Detection And Estimation 【作者】:Mourad Barkat 【格式】:PDF 【页数】:711 【语言】:English 【出版社】:Artech.House.Publishers 【出版日期】:2005年 很好的一本检测方面的书!讲得很清晰!
1
Kaggle面部关键点检测 面部关键点标签是计算机视觉中一个重要且具有挑战性的问题。 在推论时,我们想将人脸图像的像素表示作为输入,并输出各种界标的位置,包括眼睛和嘴唇周围和周围的位置以及鼻尖。 准确标记这些位置的能力使众多下游应用成为可能。 其中包括面部识别,面部表情分析,检测畸形的面部征兆以进行医学诊断,生物识别和视频中的面部跟踪。 例如,可以通过测量嘴唇的形状来进行面部表情分析,其中弯曲可能代表微笑,弯曲可能代表皱眉。 该分析对于对零售商店的交易的真实客户满意度或驾驶员的汽车心情进行分类很重要。 检测面部关键点是一个非常具有挑战性的问题。 解决这些难题的计算机视觉研究已经走了很长一段路,但是仍有很多改进的机会。 面部特征因人而异,拍摄角度的多样性以及面部图像相对于其余图像的比例是三个难题,这在实践中使准确标记变得困难。 该项目的目标是开发一种机器学习模型来解决这个问题,其中包括
2021-12-13 16:22:16 340.43MB Python
1
该数据集包含665张带有PASCAL VOC格式的带有边界框注释的图像,用于创建检测模型,并且可以用作POC / POV以维护道路。 所有注释都属于一个类:坑洞。 Pothole Detection_datasets.txt Pothole Detection_datasets.zip
2021-12-13 10:56:46 334.44MB 数据集
1
支持向量数据描述SVDD:使用支持向量数据描述(SVDD)进行异常检测或故障检测的MATLAB代码
2021-12-12 22:28:32 4.03MB matlab fault-detection svdd abnormal-detection
1
使用机器学习技术预测肝炎疾病 内容 1.简介2.属性3.框图4.算法和分类器5.获得的结果6.结论 介绍 医学诊断是一项重要且非常复杂的任务,需要准确识别。 重要的是要在适当的时间诊断出疾病并尽早治愈。 肝脏是人体的重要组成部分。 影响肝功能的严重疾病之一是肝炎,它会引起肝脏炎症。 这项工作的主要目的是通过使用不同的ML工具和神经网络体系结构训练同一数据集,并选择那些诊断肝炎疾病的最佳工具来对特定数据集进行比较研究。 属性 属性 价值 年龄 否(1),是(2) 数值 否(1),是(2) 性别 否(1),是(2) 男(1),女(2) 否(1),是(2) 类固醇 否(1),是(2)v 大肝 否(1),是(2) 肝脏公司 否(1),是(2) 蜘蛛网 否(1),是(2) 抗病毒药 否(1),是(2) 疲劳 否(1),是(2) 马拉丝 否(1),是(2) 脾可触及 否
1
Android NDK上的GPU加速TensorFlow Lite应用程序。 在Android NDK上运行并测量TensorFlow Lite GPU委托的性能。 1.应用 轻巧的人脸检测。 更高精确度的人脸检测。 检测面部并估计其年龄和性别 基于预训练模型 使用Moilenet进行图像分类。 物体检测 使用MobileNet SSD进行对象检测。 头发分割 头发分割和重新着色。 3D姿势 从单个RGB图像进行3D姿势估计。 虹膜检测 通过检测虹膜来估计眼睛位置。 姿势网 姿势估计。 深度估计(DenseDepth) 从单个图像进行深度估计。 基于https://github.com/ialhashim/DenseDepth的预训练模型 语义分割 为输入图像中的每个像素分配语义标签。 动漫自拍照 生成动漫风格的人脸图像。 基于https://githu
2021-12-11 20:15:30 234.93MB opengles style-transfer segmentation object-detection
1
STM32F4-Discovery 板的自由落体检测 自由落体检测驱动程序,基于中断,用于 LIS3DSH 加速度计(STM32F4-Discovery 板)。 该项目在 Miosix 内核 ( ) 上运行。 ============================ 您可以在以下 URL 中找到有关如何配置和使用内核的信息: : 测试套件位于 miosix/_tools/testsuite miosix/_tools/processes 中的流程支持模板
2021-12-11 01:37:13 4.2MB C
1