该教程全面阐述了CCDC变化监测过程中所需用到的全部流程,冰包含了相关的下载代码,你只需要修改自己的研究区即可在谷歌地球引擎中(GEE)实现CCDC的全过程分析。 土地覆盖变化影响自然和人为环境,并被全球气候观测系统视为基本气候变量。例如,荒漠化导致从植被生态系统到沙漠的土地覆盖过渡,毁林导致森林转变为人为改造的土地利用,城市发展可以将自然环境转变为建筑物和道路覆盖的环境。为了了解这些过渡的影响,在国家至区域尺度上对其进行量化至关重要,这通过遥感分析来实现。 使用遥感数据监测土地变化需要将图像转换为关于景观变化的有用信息的方法。一个被广泛应用的方法是连续变化检测和分类(CCDC;Zhu and Woodcock 2014)。本教程将演示如何在Google Earth Engine上应用CCDC进行土地变化监测。
2024-11-20 22:50:04 904KB 课程资源 ccdc 变化检测
1
句子分类 该项目的目标是根据类型对句子进行分类: 陈述(陈述句) 问题(疑问句) 感叹号(感叹句) 命令(命令句) 以上每个广泛的句子类别都可以扩展,并且可以进行更深入的介绍。 这些网络和脚本的设计方式应该可以扩展,以对其他句子类型进行分类(如果提供了数据)。 它是为在应用开发的,并在上随附了有关构建实用/应用的神经网络的。 请随意添加PR,以自由更新,改进和使用! 安装 如果您有GPU,请安装CUDA和CuDNN(在您选择的系统上) 安装要求(在python 3上,python 2.x无效) pip3 install -r requirements.txt --user 执行: 预训练模型: python3 sentence_cnn_save.py models/cnn 要建立自己的模型: python3 sentence_cnn_save.py models/
2024-10-20 17:03:31 23.04MB neural-network fasttext
1
xlnetmid event classification for financial news
2024-07-31 15:20:42 742.31MB 深度学习
1
《植物幼苗分类:探索与理解数据集》 在当今的科技时代,人工智能与机器学习在各个领域都发挥着越来越重要的作用,其中自然语言处理、计算机视觉和生物识别等领域尤为突出。今天我们要探讨的是一个专注于计算机视觉领域的数据集——"Plant Seedlings Classification",它是一个用于植物幼苗种类分类的任务,旨在帮助我们理解和开发更精确的植物识别技术。 该数据集的核心目标是通过图像分析来确定幼苗的种类,这对于农业研究、生态保护以及植物生物学都有着深远的意义。在这个任务中,研究人员或开发者需要训练模型来识别和区分不同类型的幼苗,这不仅可以提高农业生产效率,也有助于保护和研究稀有植物种群。 数据集的主要组成部分包括"Plant Seedlings Classification_datasets.txt"和"sample_submission.csv"两个文件。"Plant Seedlings Classification_datasets.txt"文件很可能包含了关于数据集的详细信息,如每个类别的标签、图片数量、图像的来源等,这些信息对于理解和预处理数据至关重要。开发者需要仔细阅读这个文本文件,了解数据集的基本结构和规则,以便于后续的特征提取和模型训练。 另一方面,"sample_submission.csv"是数据提交的示例文件,通常包含了一个预期的输出格式。在这个CSV文件中,每一行代表一个图像的预测结果,列名可能包括图像的唯一标识符和对应预测的类别标签。为了参与这个挑战或者评估自己的模型性能,开发者需要按照这个模板生成自己的预测结果,并提交以进行评分。 在这个数据集中,关键的技术点包括: 1. 图像预处理:由于原始图像可能存在光照不均、大小不一等问题,因此需要对图像进行预处理,如灰度化、归一化、缩放等操作,以便于模型的训练。 2. 特征提取:可以使用传统的图像处理技术(如边缘检测、直方图均衡化)或深度学习方法(如卷积神经网络CNN)来提取图像中的关键特征,这些特征对于区分不同种类的幼苗至关重要。 3. 模型选择:选择合适的模型进行训练,常见的有支持向量机(SVM)、随机森林(RF)、深度学习模型如ResNet、VGG、Inception等。对于这种图像分类问题,深度学习模型往往能取得更好的效果,但需要更多的计算资源。 4. 训练与优化:调整模型参数,如学习率、批次大小、损失函数等,以提高模型的准确性和泛化能力。此外,数据增强也是一种有效的方法,可以增加模型的训练样本,防止过拟合。 5. 模型评估与调优:使用交叉验证、混淆矩阵、准确率、召回率、F1分数等指标来评估模型性能,并根据结果进行模型的调整和优化。 6. 部署与应用:最终的模型可以集成到实际系统中,例如,构建一个植物识别应用程序,用户可以通过上传图片,系统自动识别出幼苗的种类。 "Plant Seedlings Classification"数据集提供了一个绝佳的平台,让我们能够运用计算机视觉技术来解决实际的生物学问题。通过深入研究和实验,我们可以不断提高模型的准确性和实用性,为农业科研和生产带来新的突破。
2024-07-02 19:24:09 5KB 数据集
1
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
classification_BPNeuralNetwork 本文介绍了通过Python实现BP神经网络分类算法,对不同半径的圆进行多分类(3分类),特征即为圆的半径。 输入层12节点,一个6节点的隐藏层,输出层3个节点。 1.目标 通过BP算法实现对不同半径的圆的分类。 2.开发环境 IDE:PyCharm 2018.3.3(Community Edition) Python及相关库的版本号如下图所示: 3.准备数据 目的: 生成3类圆在第一象限内的坐标(圆心都是原点) 第1类:半径范围为110,分类标识为‘0’ 第2类:半径范围为1020,分类标识为‘1’ 第3类:半径范围为20~30,分类标识为‘2’ 代码如下:data_generate.py import numpy as np import math import random import csv # 只生成第一象限内的坐标即
2024-05-13 21:00:26 494KB 附件源码 文章源码
1
Matlab混凝土二维模型代码如何讨论生成的分类方法 2020年12月23日 我感谢您的评论。 给我发电子邮件! 雇用我! :smiling_face_with_smiling_eyes: 因此,今天我们将介绍一种简单而强大的方法来构建分类器。 这称为生成方法,它基于概率分布。 因此,生成方法的主要思想是使每个类分别具有概率分布。 好的? 因此,例如,在这里我们有大约15-20点的训练集,而我们要做的是首先只看一个标签,所以这里有两个标签,正负。 因此,我们从仅看优点开始,然后为它们拟合模型。 然后,我们仅查看缺点,并针对这些缺点拟合模型。 所以也许我们得到这样的东西。 因此,在左侧,我们有一个椭圆形分布,适合于正弦,然后有另一个椭圆形分布,适合于负号。 这是一个完整的学习过程。 现在,当出现一个新的点(例如,类似这样的点)并且我们要对其进行分类时,我们只是问自己:这个新点是更可能来自红色分布还是蓝色分布? 在这两个分布中的哪个分布下,它具有较高的概率? 就是这样。 好的,这是生成方法的高级概述。 因此,让我们更具体一点,并详细说明一些细节。 好的,这是一张包含三个类别或三个标签的图片。 我们称它们为一,二和三。 因此,标签空间y只是集合1、2和
2024-05-13 17:05:24 96KB 系统开源
1
ResNet_classification。ResNet网络在pytorch框架下实现图像分类,拿走即用,包含批量化测试验证。该文件包含ResNet18、ResNet50、ResNet101等网络实现图像分类的代码及对训练好的模型进行单一测试和批量测试的代码。ResNet网络是参考了VGG19网络,在其基础上进行了修改,并通过短路机制加入了残差单元。
2023-12-18 17:42:31 7KB pytorch ResNet 图像分类 python
1
2018 UCR Time Series Classification Archive(UCI时间序列数据集,共包含128个数),可用于时间序列分类任务,解压密码为 someone
2023-10-13 16:22:29 301.53MB 数据集
1
机器学习分类算法演示 机器学习分类算法demo 金融客户分类,类举多个通用分类算法的基本使用,各种分类方法模型最终需要参考的不只是准确率,还包括召回率,F1分数等 环境 python 3.7.2 斯克莱恩0.23.2 熊猫1.1.5 numpy的1.19.4 代码 聚类 k_means.py -K均值聚类-0.85 svm.py支持向量机聚类gmm.py高斯混合模型聚类gmm.py DBSCAN.py -DBSCAN密度聚类DBSCAN.py 其他分类 KNN.py -K近邻-0.89 logistic.py逻辑回归-0.90±1 Decision_tree.py- decision_tree.py -0.90±1 naive_bayes.py朴素贝叶斯-0.86 文件 bank-full.csv数据文件bank-names.txt数据分段含义tree.dot决策树结构tree.pn
2023-07-09 21:31:56 1.09MB
1