该资源为NIPS2023的论文Large Language Models AreZero-Shot Time Series Forecasters的学术汇报PPT,可直接用来学术汇报
2025-02-11 03:36:18 2.1MB
1
时间序列是一类重要的时间数据对象,可以很容易地从科学和金融应用中获得,并且时间序列的异常检测已成为当前的热门研究课题。 这项调查旨在提供有关异常检测研究的结构化和全面的概述。 在本文中,我们讨论了异常的定义,并根据每种技术采用的基本方法将现有技术分为不同的类别。 对于每个类别,我们都会确定该类别中该技术的优缺点。 然后,我们简要介绍一下最近的代表性方法。 此外,我们还指出了有关多元时间序列异常的一些关键问题。 最后,讨论了有关异常检测的一些建议,并总结了未来的研究趋势,有望对时间序列和其他相关领域的研究者有所帮助。
2024-10-27 21:34:43 202KB time series; anomaly detection;
1
基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学
2024-07-04 12:40:54 5.98MB r语言 时间序列
1
时间序列预测调查 该项目的目的是使用新颖的机器学习方法改进对时间序列的预测,并将其向前推进几步,以便更好地预测异常值,例如资产负债表上的异常。 安装 将此存储库克隆或下载到您的计算机。 安装Jupyter Lab( pip install jupyterlab )。 cd到存储库的目录。 使用以下命令启动Jupyter Lab: jupyter lab 。 笔记本可以在Jupyter Lab窗口中打开并运行。 所需的数据很轻,因此已经包含在此存储库中。
2024-03-29 17:34:11 9.59MB JupyterNotebook
1
通过状态空间方法的时间序列分析
2024-01-14 13:08:42 8.74MB 状态空间方法 时间序列分析
1
扩散卷积循环神经网络:数据驱动的交通预测 这是以下论文中Diffusion Convolutional Recurrent Neural Network的TensorFlow实现: Yaguang Li、Rose Yu、Cyrus Shahabi、Yan Liu,,ICLR 2018。 要求 scipy>=0.19.0 numpy>=1.12.1 熊猫>=0.19.2 皮亚尔 统计模型 张量流>=1.3.0 可以使用以下命令安装依赖项: pip install -r requirements.txt 数据准备 洛杉矶(METR-LA)和湾区(PEMS-BAY)的交通数据文件,即metr-la.h5和pems-bay.h5 ,可以在或,需要放入data/文件夹。 *.h5文件使用HDF5文件格式将数据存储在panads.DataFrame 。 下面是一个例子: 传感器_0 传
2024-01-07 22:17:19 10.14MB time-series
1
2018 UCR Time Series Classification Archive(UCI时间序列数据集,共包含128个数),可用于时间序列分类任务,解压密码为 someone
2023-10-13 16:22:29 301.53MB 数据集
1
实用的时间序列分析 这是出版的《 的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 时间序列分析使我们能够分析一段时间内的某些数据并了解数据随时间变化的模式,这本书将使您了解时间序列分析背后的逻辑并将其应用于各个领域,包括财务,业务和社交媒体。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 该代码将如下所示: import os import pandas as pd %matplotlib inline from matplotlib import pyplot as plt import seaborn as sns 您将需要Anaconda Python发行版来运行本书中的示例,并编写自己的Python程序以进行时间序列分析。 可从免费下载。 本书的代码示例是使用Jupyter Noteb
2023-10-05 22:27:33 2.94MB JupyterNotebook
1
系统的(由于要用到的知识多,因此只能是大略介绍,不可能详细)。 下面是我看过的觉得比较好的几本: 230《数学建模与数学实验.第 3 版》赵静, 但琦主编 231《数学建模及其基础知识详解》王文波编著 232《数学建模方法及其应用》韩中庚编著 233《数学建模》Maurice D. Weir, (美) William P. Fox 著 二十一、“数学史”
2023-05-15 15:52:09 429KB math
1
时间序列(time series)是一组按照时间发生先后顺序进行排列的离散序列,是日常生活中最常见的数据形式之一。对时间序列的分析是既是统计学中的重要问题,也是人工智能、数据挖掘的一个重要应用方向。 本课程面向人工智能学院的本科生和研究生,重点关注统计学中分析时间序列的基本思路、模型以及方法。同时强调使用人工智能技术对时序数据这一种特殊的数据类型进行分析,也关注使用“时间序列分析”中的思路看待和解决人工智能领域的实际问题。 课程内容将从时间序列的发展历程、平稳性、经典分析模型等概念先后推进。课程中也会介绍人工智能的相关技术,如使用循环神经网络进行时间序列的建模,或使用时间序列中的自回归、指数平均思想建模机器学习、计算机视觉的重要问题。
2023-04-09 15:11:05 24.97MB 时间序列
1