小人电脑 使用 Little Man Computer (LMC) 测试问题和答案 背景 问题 Q6. 取两个输入a , b并计算a × b 。 Q7. 输入a并计算a除以 2。 Q8. 输入a和b并计算a除以b 。 Q9. 接受输入直到收到输入 0,然后输出最小的输入。 Q10。 取两个输入并输出最大公因数(查找欧几里德算法) Q11。 基本目标:创建一个 Little Man 计算机程序以获取三个输入(a、b 和 c)并确定它们是否形成勾股三元组(即 a^2+b^2=c^2)。 如果输入不是勾股三元组,您的程序应该输出零 (000),如果输入是勾股三元组,您的程序应该输出一 (001)。 Q12。 中级目标:增强您的程序以接受以任何顺序呈现的勾股三元组,即 3,4,5,或 5,3,4 或 4,5,3 都将被接受(输出 001),尽管显然是 3,4,6以任何顺序都不
2025-11-12 20:20:50 5KB
1
在当今学术与职场竞争日益激烈的环境下,一份精致且内容丰富的简历对于求职者来说至关重要。哥本哈根大学的简历模板以其简单朴素的设计广为人知,但有时这样的模板无法充分展示申请者的所有优势与经历。针对这一问题,有心的申请者通过精心设计和内容优化,开发出了优化版本的CV模板。该模板通过微调布局和优化内容的展现方式,不仅使得简历的外观更为美观,而且能在有限的一页纸内展示更多的有效信息。 哥本哈根大学的优化CV模板适合多种学术背景的申请者使用,尤其是工程和计算机科学领域的学生。这不仅适用于求学申请,也适用于奖学金申请和研究助理职位的申请。优化版的简历模板重点突出了申请者的核心优势,如学术成就、学术奖项、研究经历等。其中,学术成就部分特别强调了GPA(学分绩点)和排名,这通常是申请者学术能力的直观体现。同时,该模板还突出了申请者的学术奖项,比如“Erasmus Fully Scholarship”和“First Prize Scholarship”,这样的荣誉不仅证明了申请者的学术能力,也显示了其在专业领域的竞争力。 优化版简历中的学术经验部分,则着重介绍了申请者在学术研究上的贡献和实践经验。通过精心编写的“Research Overview and Significance”和“Key Responsibilities”部分,申请者能够详细地阐述自己的研究项目内容、研究的创新点和意义,以及在项目中所承担的角色和责任。这不仅让招聘者或者奖学金评审者能够快速了解申请者的专业能力和工作经验,还能够感受到申请者对于学术研究的热情和专业性。 此外,该模板还为申请者提供了个性化信息的填写空间,如个人姓名、出生日期、国籍等,使得简历的个人信息部分更加完整和清晰。联系方式的添加,如电子邮件和电话号码,也方便了用人单位与申请者的直接沟通。 在学术经历中,哥本哈根大学优化版CV模板还支持申请者详细记录自己的交换学习经历。通过列出交换学习的时间、所在学校和参与的课程,申请者可以展示自己的国际视野和适应新环境的能力。 哥本哈根大学优化版的简历模板更加注重在简洁美观的基础上,让申请者能够有条理地展示自己的教育背景、学术成就、研究经验和个性化信息。通过这样的模板设计,申请者可以提高自己简历的专业性和吸引力,从而在众多竞争者中脱颖而出。
2025-11-12 15:37:37 66KB Computer Science Research Assistant
1
《计算机视觉中的多视图几何》是一门深入探讨如何利用多个视角来理解三维世界的学科。在计算机视觉领域,多视图几何是核心概念之一,它涉及到图像处理、三维重建、立体视觉等多个关键分支。这份"Multiple_View_Geometry_in_Computer_Vision"的PPT讲义,无疑为我们提供了一个全面的学习资源,帮助我们掌握这一领域的核心理论和技术。 1. **基础概念** - **投影几何**:在多视图几何中,我们首先需要理解的是投影几何,它是将三维世界映射到二维图像平面上的过程。这个过程由摄像机模型描述,包括内在参数(如焦距、主点位置)和外在参数(如摄像机位置和方向)。 2. **摄像机模型** - **针孔相机模型**:最常用的摄像机模型是针孔相机模型,其中光线通过一个虚拟的针孔在图像平面上形成投影。 - **投影矩阵**:将三维世界坐标转换为二维图像坐标的关键是投影矩阵,它结合了内在和外在参数。 3. **特征匹配** - **特征检测**:为了在不同视图之间建立联系,我们需要识别出图像中的显著特征,如SIFT、SURF或ORB等。 - **特征描述符**:每个特征都需要一个描述符来区分其独特性,这些描述符应具有旋转、尺度和光照不变性。 - **匹配算法**:特征匹配通常采用基于描述符距离的算法,如BF匹配或FLANN加速的KNN匹配。 4. **基础矩阵与本质矩阵** - **基础矩阵**:两视图间对应点的线性约束关系,可以用来恢复摄像机之间的相对姿态,且基础矩阵有8个独立元素。 - **本质矩阵**:在已知内在参数的情况下,基础矩阵可以简化为本质矩阵,它同样可以描述两摄像机间的相对运动。 5. **三角测量** - **单应性矩阵**:当三个或更多视图可用时,可以使用单应性矩阵进行三角测量,从而获取三维点的位置。 - **立体视觉**:通过计算左右图像中对应点的视差,可以恢复深度信息,实现三维重建。 6. **结构从运动(SFM)** - **光流法**:估计连续帧间的像素运动,可以用于跟踪和重建。 - **全局SFM**:通过不完全观测的视图序列重建三维场景,使用算法如RANSAC或LM优化来估计相机轨迹和场景结构。 - **局部SFM**:通过迭代优化,逐步增加视图来改进重建结果。 7. **SLAM(Simultaneous Localization and Mapping)** - **同时定位与建图**:在未知环境中,机器人通过移动和观察来同时构建地图并确定自身位置,多视图几何在此过程中起到关键作用。 8. **应用** - **自动驾驶**:多视图几何技术在自动驾驶车辆的环境感知和路径规划中至关重要。 - **增强现实(AR)**:通过理解真实世界的空间结构,AR能够将虚拟物体准确地融入现实场景。 - **无人机导航**:无人机的自主飞行和避障也需要依赖多视图几何技术。 这份PPT讲义详细涵盖了多视图几何的各个方面,从基本理论到高级应用,是学习和研究计算机视觉领域不可或缺的参考资料。通过深入学习,我们可以掌握如何利用多个视角来解决实际问题,如三维重建、物体识别、空间定位等。
2025-10-13 23:51:54 42.3MB
1
用于脑机接口(BCI)的MATLAB工具箱_MATLAB toolbox for Brain-Computer Interfacing (BCI).zip
2025-09-07 17:06:23 2.57MB
1
区域道具 Regionprops是Matlab提供的regionprops的C ++版本。 要求 Regionprops需要以下软件包才能构建: OpenCV(<3> > contours; std::vector hierarchy; cv::findContours (bin, contours, hierar
2025-07-30 13:45:59 124KB opencv c-plus-plus computer-vision
1
PixelAnnotation工具 Linux/MAC Windows Donate 该软件可让您手动和快速注释目录中的图像。 该方法是伪手动方法,因为它使用为OpenCV算法。 总体思路是手动为标记提供画笔,然后启动算法。 如果首先需要分割,则用户可以通过在错误区域上绘制新标记来细化标记(如以下视频所示)。 范例: 来自用户( )的小例子: : v tX-xcg5wY4U 建立依赖关系: > = 5.x > = 2.8.x > = 2.4.x 对于Windows编译器:在Visual Studio> = 2015下工作 如何建造去 下载二进制文件: 转到发布
2025-07-09 22:01:09 21.03MB opencv computer-vision deep-learning annotation
1
MasterMind 游戏 计算机编程 II (Java) 课程,2013 年秋季 - 简单的 Master Mind game 在MVC设计模式(模型/视图/控制器)中实现 [可执行 JAR 文件] ( ) 项目贡献者: 达莉亚·艾曼·艾哈迈德 Yomna Ali El-Din Fatma Gamal El-Nagar
2024-11-22 15:30:35 139KB Java
1
这是深度传感器示例(包括“Azure Kinect和Femto Bolt示例”、“Kinect-v2示例”等)进化过程中的下一步。不过,这个资产不是使用深度传感器作为输入,而是使用普通的网络摄像头或视频录制,并使用AI模型来提供深度估计、人体跟踪、物体跟踪等流。该包包含30多个演示场景。 角色演示场景展示了如何在场景中使用用户控制的角色,手势演示展示了如何在项目中使用离散和连续手势,试衣间演示展示了如何将用户的身体与虚拟模型叠加或融合,背景移除演示展示了如何在虚拟背景上显示用户的轮廓等等。所有演示场景的简要说明可在在线文档中找到。 该包适用于普通网络摄像头和可在Unity视频播放器中播放的视频片段。它可以在所有版本的Unity(免费版、Plus版和专业版)中使用。 1. 创建一个新的Unity项目(使用Unity 2023.2或更高版本, 此资源只供交流学习,不可商用。 正版地址:https://assetstore.unity.com/packages/tools/ai-ml-integration/computer-vision-examples-for-unity-174050
2024-10-24 16:25:20 225.98MB unity
1
计算机视觉:算法和应用(第二版) 计算机视觉是一门多学科交叉的领域,它结合了计算机科学、数学、物理、生物学和心理学等多个领域,旨在使计算机能够像人类一样“看到”和“理解”世界。计算机视觉的应用极其广泛,涉及到图像和视频处理、机器人视觉、自动驾驶、医疗图像分析、人机交互等领域。 本书《计算机视觉:算法和应用》(第二版)由Richard Szeliski编写,是一本深受欢迎的计算机视觉教科书。该书涵盖了计算机视觉的基础知识和前沿技术,包括图像形成、图像处理、模型拟合、深度学习、特征检测和匹配、图像对齐和拼接、运动估计、计算摄影、结构从运动和SLAM等内容。 下面是本书的详细知识点: 1. 计算机视觉概述 计算机视觉是一门交叉学科,旨在使计算机能够“看到”和“理解”世界。它结合了计算机科学、数学、物理、生物学和心理学等多个领域。计算机视觉的应用极其广泛,涉及到图像和视频处理、机器人视觉、自动驾驶、医疗图像分析、人机交互等领域。 2. 图像形成 图像形成是计算机视觉的基础,它包括了图像的形成过程和图像的表示方式。图像的形成过程涉及到光学成像、图像传感器和图像处理等方面。图像的表示方式包括了图像的矢量表示、矩阵表示和图像的频域表示等。 3. 图像处理 图像处理是计算机视觉的一个重要组成部分,它包括了图像增强、图像恢复、图像分割、图像识别等技术。图像处理的目的是将图像变得更加清晰、更加容易被计算机所理解。 4. 模型拟合和优化 模型拟合和优化是计算机视觉的一个重要组成部分,它包括了散点数据插值、变分方法和正则化、马尔科夫随机场等技术。模型拟合和优化的目的是将图像中的信息转换为计算机能够理解的形式。 5. 深度学习 深度学习是计算机视觉的一个重要组成部分,它包括了监督学习、无监督学习、深度神经网络、卷积神经网络等技术。深度学习的目的是将图像中的信息转换为计算机能够理解的形式。 6. 特征检测和匹配 特征检测和匹配是计算机视觉的一个重要组成部分,它包括了点特征、边缘特征、线特征、角点特征等技术。特征检测和匹配的目的是将图像中的信息转换为计算机能够理解的形式。 7. 图像对齐和拼接 图像对齐和拼接是计算机视觉的一个重要组成部分,它包括了图像配准、图像拼接、全局配准等技术。图像对齐和拼接的目的是将多个图像合并成一个完整的图像。 8. 运动估计 运动估计是计算机视觉的一个重要组成部分,它包括了转换对齐、参数运动、光流估计、层次运动等技术。运动估计的目的是将图像中的运动信息转换为计算机能够理解的形式。 9. 计算摄影 计算摄影是计算机视觉的一个重要组成部分,它包括了照明校准、高动态范围成像、超分辨率、去噪和去模糊、图像抠图和合成等技术。计算摄影的目的是将图像变得更加清晰、更加容易被计算机所理解。 10. 结构从运动和SLAM 结构从运动和SLAM是计算机视觉的一个重要组成部分,它包括了几何校准、位姿估计、双帧结构从运动、多帧结构从运动、SLAM等技术。结构从运动和SLAM的目的是将图像中的信息转换为计算机能够理解的形式。 《计算机视觉:算法和应用》(第二版)是一本涵盖了计算机视觉的基础知识和前沿技术的优秀教科书,非常适合计算机视觉的初学者和研究人员。
2024-10-04 10:42:40 41.19MB
1
用于计算机网络四级等级考试,内有激活码,
2024-08-28 08:59:27 7.54MB computer
1