根据提供的文件信息,我们可以深入探讨计算机系统的基本概念及其在不同领域的应用。本篇文章将围绕《计算机组成原理》第四版教科书中的第一章“计算机抽象和技术”进行详细解析,并结合计算机系统的分类、学习方法以及嵌入式处理器的特点进行展开。 ### 计算机系统的定义与分类 #### 定义 计算机系统通常指的是由硬件和软件组成的完整系统,它们协同工作以执行各种计算任务。在本章节中提到的计算机系统主要关注于PC系统,但实际上计算机系统的类型非常广泛,包括台式电脑、服务器、嵌入式设备等。这些系统不仅在制造商方面存在差异(如Intel、Apple、IBM等),而且在技术基础和成本上也有所不同。 #### 分类 计算机系统可以根据其用途和设计特点分为三大类:桌面计算机、服务器和嵌入式计算机。 1. **桌面计算机**:这类计算机占据了最大的市场份额,价格性能比是非常重要的考虑因素。 2. **服务器**:现代服务器可以看作是以前大型机、小型机和超级计算机的进化形式,它们通常通过网络被访问,并且具有可扩展性和高可靠性。 3. **嵌入式计算机**:这类计算机是数量最多的一类,它们的应用范围极广,从手机到工业控制设备都有涉及。嵌入式系统通常需要满足最低性能要求,并且对成本和功耗有严格的限制。 ### 如何学习计算机系统 为了更好地理解计算机系统的工作原理,一个有效的方法是专注于特定实例的学习,同时掌握一般原则和历史视角。例如,学习汽车工程时,我们会关注汽车的共同特性(如轮子)和不同类型的汽车之间的巨大差异(比如燃油车与电动车的区别)。同样地,在学习计算机系统时,我们也可以采用类似的方法来加深理解。 ### 嵌入式处理器的应用与特点 嵌入式处理器是计算机系统中最广泛的类别之一,其应用范围涵盖了从手机到汽车电子系统等多个领域。近年来,随着智能手机销量的快速增长,嵌入式处理器的需求量也随之增加,远超桌面计算机的增长速度。 #### 特点 1. **应用广泛**:嵌入式处理器的应用范围非常广泛,几乎涵盖了所有行业中需要智能化控制的场景。 2. **性能要求**:很多情况下,嵌入式处理器只需要满足最低性能要求即可,这有助于降低成本和功耗。 3. **成本与功耗限制**:对于大多数嵌入式应用来说,成本和功耗是最关键的设计考量因素之一。例如,在移动设备中,为了延长电池寿命,往往需要选择低功耗的处理器。 ### 结论 通过对计算机系统基本概念的理解和不同类别计算机系统的分析,我们可以更全面地了解计算机系统的构成和应用场景。特别是对于嵌入式处理器而言,其在现代社会中的作用越来越重要,无论是从增长趋势还是应用领域来看,都体现了其巨大的价值和发展潜力。通过对这些知识点的学习,我们可以更好地理解计算机系统的设计原理和技术发展趋势。
2026-02-07 09:15:57 583KB computer organization
1
Stanford公开课《Algorithm: Design and Analysis》推荐的一本有关计算机科学的数学基础类读物。本书为英文版本,如果阅读起来有困难,我个人建议大家阅读中文版《离散数学及其应用》。
2026-02-06 19:27:37 5.8MB 计算机科学
1
三菱电脑连线B M60-60S-Series-computer-link-B-setup-procedure
2026-01-28 21:11:51 39KB RS232
1
骨骼追踪 一种从二进制图像中检索拓扑骨架作为一组折线的新算法。 :C,C ++,Java,JavaScript,Python,Go,C#/ Unity,Swift,Rust,Julia,WebAssembly,Haxe,Processing,OpenFrameworks。 [] 介绍 传统上,骨架化(稀化)是一种形态学操作,用于将二值图像还原为其拓扑骨架,从而返回栅格图像。 但是,有时更需要矢量表示(例如折线)。 尽管可以使用轮廓查找来进一步跟踪结果,但是它们通常会给出封闭的轮廓,而不是单个笔触,并且由于骨架化过程的不完善而导致笔触宽度容易出现细微变化。 在此演示中,我们提出了一种基于可并
2026-01-23 13:03:47 7.77MB algorithm computer-vision computational-geometry
1
Computer Vision: Principles, Algorithms, Applications, Learning By 作者: E. R. Davies ISBN-10 书号: 012809284X ISBN-13 书号: 9780128092842 Edition 版本: 5 出版日期: 2017-11-29 pages 页数: (900 ) Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. Examples and applications―including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians―give the ‘ins and outs’ of developing real-world vision systems, showing the realities of practical implementation. Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. The ‘recent developments’ sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. Tailored programming examples―code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)
2026-01-05 12:43:15 38.05MB Machine Lear
1
计算机视觉注释工具(CVAT) CVAT是用于计算机视觉的免费,在线,交互式视频和图像注释工具。 我们的团队正在使用它来注释数百万个具有不同属性的对象。 许多UI和UX决策都是基于专业数据注释团队的反馈。 在线尝试 。 文献资料 截屏 支持的注释格式 单击“上传注释”和“转储注释”按钮后,可以选择格式。 数据集框架允许通过其命令行工具和Python库进行其他数据集转换。 有关支持的格式的更多信息,请参阅。 注释格式 进口 出口 X X X X X X X 分割蒙版 X X X X X X X X X X X X X X X X X X X X X X X X 深度学习无服务器功能,用于自动标记 名称 类型 框架 中央处理器 显卡 互动者 OpenVINO X 探测器 OpenVINO X 探测器 OpenVINO X 探测器
2025-12-10 22:26:23 24.77MB computer-vision deep-learning annotation tensorflow
1
计算机网络是信息技术领域中的核心科目,它涉及到网络的构建、通信协议、数据传输以及网络应用等方面。本资源为"计算机网络(第四版)"的英文原版课件,由知名计算机科学家Andrew S. Tanenbaum撰写。 Tanenbaum教授在计算机网络领域的贡献广泛,他的著作深入浅出,深受学习者喜爱。 在压缩包中,包含两部分课件:Chapter 7 和 Chapter 8,分别对应课程的第七章和第八章。以下是对这两章内容的详细概述: **第七章 - 数据链路层(Data Link Layer)** 数据链路层是网络模型中的第二层,它的主要任务是为网络层提供可靠的数据传输服务。这一章将详细讲解数据链路层的功能、协议和工作原理。主要内容包括: 1. **错误检测与纠正**:数据链路层通过校验码(如CRC)来检测传输错误,并可能通过重传机制进行错误纠正。 2. **媒体访问控制(MAC)**:讨论如何在共享媒体上协调多个设备的发送,如CSMA/CD(载波监听多路访问/冲突检测)和CSMA/CA(载波监听多路访问/冲突避免)。 3. **局域网(LAN)技术**:介绍以太网、令牌环网等传统局域网技术及其工作原理。 4. **帧结构**:分析不同协议下的帧格式,如Ethernet II和LLC(逻辑链路控制)。 5. **点对点协议(PPP)**:用于拨号连接和广域网的数据链路层协议,介绍其帧结构和认证机制。 6. **高级数据链路控制(HDLC)**:一种同步数据链路控制协议,用于全双工通信。 **第八章 - 网络层(Network Layer)** 网络层位于OSI模型的第三层,负责数据包的路由和转发。这一章将深入探讨网络层的关键概念和协议: 1. **IP协议**:互联网协议,描述了数据包在网络中的传输方式,包括IP地址的分类(IPv4和IPv6)、分片与重组、路由选择算法等。 2. **路由选择**:介绍路由器的工作原理和静态与动态路由的区别,以及常见的路由协议,如RIP、OSPF和BGP。 3. **子网划分与CIDR**:为了更有效地管理IP地址,会进行子网划分和无类别域间路由(CIDR)的使用。 4. **互联网控制消息协议(ICMP)**:用于网络诊断和错误报告,例如ping命令就是基于ICMP实现的。 5. **IP选项与服务**:如源路由、记录路由等,这些选项可以用于特定的网络调试和监控。 6. **虚拟网络与网络地址转换(NAT)**:虚拟网络如VLAN和NVGRE提供网络隔离,NAT则用于解决公网IP地址稀缺问题。 这两章内容构成了计算机网络中至关重要的部分,涵盖了数据链路层和网络层的基本概念和协议,对于理解网络的底层工作原理有着极其重要的作用。通过深入学习,读者可以掌握网络通信的基础,为后续章节的学习打下坚实基础。
1
计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件 计算机网络第四版 computer networks v4 课件
2025-11-23 20:28:02 8.53MB 计算机网络第四版 computer networks
1
德国学校的英文课件,根据Computer Networks(4thEdition)编写
2025-11-23 20:27:13 12.41MB 计算机网络 英文课件
1
计算机视觉是信息技术领域的一个重要分支,它涉及到图像分析、模式识别和机器学习等多个技术的交叉应用。《Computer Vision》一书由Linda Shapiro撰写,这本书是计算机视觉领域的经典之作,对于初学者和深入研究者来说都是一份宝贵的资源。Linda Shapiro作为华盛顿大学的导师,她的专业知识和实践经验为本书提供了坚实的理论基础和实践指导。 本书的核心内容可能涵盖以下几个方面: 1. **图像获取与处理**:计算机视觉系统要能从环境中获取图像,这包括了摄像头的工作原理、图像传感器以及图像数字化的过程。书中可能会讲解如何进行图像预处理,如灰度化、直方图均衡化、噪声过滤等,这些步骤对后续的特征提取至关重要。 2. **特征检测与描述**:计算机视觉中的关键一步是识别出图像中的关键特征,比如边缘、角点、纹理等。SIFT(尺度不变特征变换)、SURF(加速稳健特征)和HOG(方向梯度直方图)等算法可能会在书中被详细介绍,它们用于在不同尺度和旋转下稳定地检测和描述图像特征。 3. **物体识别与分类**:通过对特征的匹配和比较,计算机可以识别出图像中的物体。这部分可能涉及机器学习算法,如支持向量机(SVM)、神经网络(包括深度学习方法,如卷积神经网络CNN)以及决策树等,用于构建识别模型。 4. **图像配准与重建**:图像配准是将多张图像对齐,以便于分析或融合,这对于立体视觉和三维重建尤其重要。书中可能会讨论光流法、基于特征的配准和基于区域的配准方法。 5. **场景理解**:这一部分将涉及更高层次的视觉任务,如场景分类、语义分割和实例分割。通过深度学习模型,如FCN(全卷积网络)和Mask R-CNN,计算机可以理解图像中的各个元素及其关系。 6. **视觉追踪与运动分析**:追踪特定对象在连续帧中的位置是计算机视觉中的一个基本问题。卡尔曼滤波器、粒子滤波器以及最近邻搜索等方法可能会被用来解决这个问题。 7. **深度学习在计算机视觉中的应用**:近年来,深度学习极大地推动了计算机视觉的发展。书中会介绍深度学习的基本概念,如卷积神经网络(CNN)、循环神经网络(RNN)以及生成对抗网络(GAN),并展示它们在图像分类、目标检测、语义分割等任务中的应用。 8. **实际应用与案例研究**:作者可能会结合实际应用场景,如自动驾驶、人脸识别、医疗影像分析等,来阐述计算机视觉技术的使用和挑战。 《Computer Vision》一书作为入门读物,将引导读者逐步深入计算机视觉的世界,从基础概念到前沿技术,全面系统地掌握这一领域的核心知识。对于正在华盛顿大学攻读硕士学位的读者来说,这将是一次宝贵的学习体验。
2025-11-19 18:40:03 6.58MB computer vision Linda Shapiro
1