用于脑机接口(BCI)的MATLAB工具箱_MATLAB toolbox for Brain-Computer Interfacing (BCI).zip
2025-09-07 17:06:23 2.57MB
1
区域道具 Regionprops是Matlab提供的regionprops的C ++版本。 要求 Regionprops需要以下软件包才能构建: OpenCV(<3> > contours; std::vector hierarchy; cv::findContours (bin, contours, hierar
2025-07-30 13:45:59 124KB opencv c-plus-plus computer-vision
1
PixelAnnotation工具 Linux/MAC Windows Donate 该软件可让您手动和快速注释目录中的图像。 该方法是伪手动方法,因为它使用为OpenCV算法。 总体思路是手动为标记提供画笔,然后启动算法。 如果首先需要分割,则用户可以通过在错误区域上绘制新标记来细化标记(如以下视频所示)。 范例: 来自用户( )的小例子: : v tX-xcg5wY4U 建立依赖关系: > = 5.x > = 2.8.x > = 2.4.x 对于Windows编译器:在Visual Studio> = 2015下工作 如何建造去 下载二进制文件: 转到发布
2025-07-09 22:01:09 21.03MB opencv computer-vision deep-learning annotation
1
MasterMind 游戏 计算机编程 II (Java) 课程,2013 年秋季 - 简单的 Master Mind game 在MVC设计模式(模型/视图/控制器)中实现 [可执行 JAR 文件] ( ) 项目贡献者: 达莉亚·艾曼·艾哈迈德 Yomna Ali El-Din Fatma Gamal El-Nagar
2024-11-22 15:30:35 139KB Java
1
这是深度传感器示例(包括“Azure Kinect和Femto Bolt示例”、“Kinect-v2示例”等)进化过程中的下一步。不过,这个资产不是使用深度传感器作为输入,而是使用普通的网络摄像头或视频录制,并使用AI模型来提供深度估计、人体跟踪、物体跟踪等流。该包包含30多个演示场景。 角色演示场景展示了如何在场景中使用用户控制的角色,手势演示展示了如何在项目中使用离散和连续手势,试衣间演示展示了如何将用户的身体与虚拟模型叠加或融合,背景移除演示展示了如何在虚拟背景上显示用户的轮廓等等。所有演示场景的简要说明可在在线文档中找到。 该包适用于普通网络摄像头和可在Unity视频播放器中播放的视频片段。它可以在所有版本的Unity(免费版、Plus版和专业版)中使用。 1. 创建一个新的Unity项目(使用Unity 2023.2或更高版本, 此资源只供交流学习,不可商用。 正版地址:https://assetstore.unity.com/packages/tools/ai-ml-integration/computer-vision-examples-for-unity-174050
2024-10-24 16:25:20 225.98MB unity
1
计算机视觉:算法和应用(第二版) 计算机视觉是一门多学科交叉的领域,它结合了计算机科学、数学、物理、生物学和心理学等多个领域,旨在使计算机能够像人类一样“看到”和“理解”世界。计算机视觉的应用极其广泛,涉及到图像和视频处理、机器人视觉、自动驾驶、医疗图像分析、人机交互等领域。 本书《计算机视觉:算法和应用》(第二版)由Richard Szeliski编写,是一本深受欢迎的计算机视觉教科书。该书涵盖了计算机视觉的基础知识和前沿技术,包括图像形成、图像处理、模型拟合、深度学习、特征检测和匹配、图像对齐和拼接、运动估计、计算摄影、结构从运动和SLAM等内容。 下面是本书的详细知识点: 1. 计算机视觉概述 计算机视觉是一门交叉学科,旨在使计算机能够“看到”和“理解”世界。它结合了计算机科学、数学、物理、生物学和心理学等多个领域。计算机视觉的应用极其广泛,涉及到图像和视频处理、机器人视觉、自动驾驶、医疗图像分析、人机交互等领域。 2. 图像形成 图像形成是计算机视觉的基础,它包括了图像的形成过程和图像的表示方式。图像的形成过程涉及到光学成像、图像传感器和图像处理等方面。图像的表示方式包括了图像的矢量表示、矩阵表示和图像的频域表示等。 3. 图像处理 图像处理是计算机视觉的一个重要组成部分,它包括了图像增强、图像恢复、图像分割、图像识别等技术。图像处理的目的是将图像变得更加清晰、更加容易被计算机所理解。 4. 模型拟合和优化 模型拟合和优化是计算机视觉的一个重要组成部分,它包括了散点数据插值、变分方法和正则化、马尔科夫随机场等技术。模型拟合和优化的目的是将图像中的信息转换为计算机能够理解的形式。 5. 深度学习 深度学习是计算机视觉的一个重要组成部分,它包括了监督学习、无监督学习、深度神经网络、卷积神经网络等技术。深度学习的目的是将图像中的信息转换为计算机能够理解的形式。 6. 特征检测和匹配 特征检测和匹配是计算机视觉的一个重要组成部分,它包括了点特征、边缘特征、线特征、角点特征等技术。特征检测和匹配的目的是将图像中的信息转换为计算机能够理解的形式。 7. 图像对齐和拼接 图像对齐和拼接是计算机视觉的一个重要组成部分,它包括了图像配准、图像拼接、全局配准等技术。图像对齐和拼接的目的是将多个图像合并成一个完整的图像。 8. 运动估计 运动估计是计算机视觉的一个重要组成部分,它包括了转换对齐、参数运动、光流估计、层次运动等技术。运动估计的目的是将图像中的运动信息转换为计算机能够理解的形式。 9. 计算摄影 计算摄影是计算机视觉的一个重要组成部分,它包括了照明校准、高动态范围成像、超分辨率、去噪和去模糊、图像抠图和合成等技术。计算摄影的目的是将图像变得更加清晰、更加容易被计算机所理解。 10. 结构从运动和SLAM 结构从运动和SLAM是计算机视觉的一个重要组成部分,它包括了几何校准、位姿估计、双帧结构从运动、多帧结构从运动、SLAM等技术。结构从运动和SLAM的目的是将图像中的信息转换为计算机能够理解的形式。 《计算机视觉:算法和应用》(第二版)是一本涵盖了计算机视觉的基础知识和前沿技术的优秀教科书,非常适合计算机视觉的初学者和研究人员。
2024-10-04 10:42:40 41.19MB
1
用于计算机网络四级等级考试,内有激活码,
2024-08-28 08:59:27 7.54MB computer
1
A very useful book for control related applications and researches.
2024-08-04 17:32:19 17.42MB Control Matlab
1
使用LAB颜色空间进行阴影检测 该存储库包含该论文的python实现:Ashraful Huq Suny和Nasrin Hakim Mithila,“使用LAB色彩空间从单个图像中进行阴影检测和去除”,IJCSI 2013: ://www.ijcsi.org/papers/IJCSI 我们使用LAB颜色空间来确定航空影像中阴影上的区域,可以将其用作阴影地面真相图进行分析。
2024-07-01 18:56:02 2KB computer-vision matlab aerial-imagery
1
OpenCV 2 Computer Vision Application Programming Cookbook!最新的OpenCv的资料,区别于OpenCV1.0.这本书是最新的Opencv2.2,里面详细介绍了在linux下QT中的使用!是不可多得的好资料!!
2024-06-21 10:31:59 6.39MB OpenCV2 Linux
1