Fisher's linear discriminant
2022-09-25 12:59:34 9KB Machine learning
1
社会上的主要疾病是全世界女性的乳腺癌,其中27%的女性患有癌症。 机器学习分类器适合医师以低成本和时间进行完美诊断。 分类器的比较性能分析需要获得准确的诊断,因为医学数据由本质上嘈杂的高维数据组成。 在这项研究中,将不同的分类器机器学习技术应用于乳腺癌数据集。 印度的癌症发生率在30年代初有所增加,但在50-64岁时达到最高点。 根据NICPR报告,在28名妇女中,有一名妇女患了乳腺癌。 但是这种比例将改变城市人口,其中22名妇女中有1名妇女受到影响。 在农村,该比例增加到每60名妇女中增加1名? 通过早期诊断和治疗可以提高患者的治愈率,这可以延长他们的寿命。 在这里,我们已经建立了一个模型来识别癌细胞是良性还是恶性的。 我们使用了机器学习技术分类器。 在这里,我们必须确定一种在不同的手术条件和数据集下预测疾病的合适技术。 结果分析表明,SVM被认为是识别不同性能矩阵(例如灵敏度,准确性,误差和特异性)的合适选择。
2022-09-25 09:22:28 1.03MB Machine learning Breast cancer
1
机器学习的10大经典算法,很经典,值得一看
2022-09-23 13:00:11 536KB machine_learning 机器学习经典
凸轮2BEV 该存储库包含我们的方法的官方实现,该方法用于在语义上分割的鸟瞰图(BEV)图像的计算中,给出了多个车载摄像机的图像,如本文所述: 一种Sim2Real深度学习方法,用于将图像从多个车载摄像头转换为鸟瞰视图中的语义分割图像( , ) , 和 摘要—准确的环境感知对于自动驾驶至关重要。 当使用单眼相机时,环境中元素的距离估计带来了重大挑战。 将相机透视图转换为鸟瞰图(BEV)时,可以更轻松地估算距离。 对于平坦表面,反透视贴图(IPM)可以将图像准确地转换为BEV。 这种转换会使三维物体(如车辆和易受伤害的道路使用者)变形,从而使得很难估计它们相对于传感器的位置。 本文介绍了一种方法,该方法可从多个车载摄像机获得的图像中获得校正后的360°BEV图像。 校正后的BEV图像被分割成语义类别,并且包括对遮挡区域的预测。 神经网络方法不依赖人工标记的数据,而是在合成数据集
1
机器学习 实战宝典 完美目录 非常好的资料 !
2022-09-21 23:32:39 10.32MB 机器学习 实战宝典 完美目录
1
BP machine learning, C-C++
2022-09-21 22:00:07 3KB bp bp_c++ c_bp machine_learning
吴恩达机器学习作业,包括MATLAB版和Python版。其中MATLAB文件夹中有原版编程作业压缩包,其中是有每个作业需要的没有编译的数据集。 机器学习-练习1 线性回归 机器学习-练习2 逻辑回归 机器学习-练习3 神经网络(前向传播) 机器学习-练习4 神经网络(反向传播) 机器学习-练习5 偏差与方差 机器学习-练习6 SVM 机器学习-练习7 聚类和降维 机器学习-练习8 异常检测和推荐系统
2022-09-14 13:05:39 88.15MB 机器学习 吴恩达 matlab python
1
the tools contains the following algorithms: Character Recognition Using Bayesian Classifier FaceRecognitionAndReconstruction GMMClassification ImageSegmentation NeuralNetwork SVMClassification
2022-09-13 15:05:12 7.25MB machinelearning
1
朴素贝叶斯算法matlab代码用于机器学习的MATLAB 这是的代码存储库,由发行。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 对于许多机器学习的研究人员和数学专家来说,MATLAB是首选的语言。 本书将帮助您为初学者使用MATLAB建立机器学习基础。 您将首先使用MATLAB环境进行机器学习来为系统做好准备,然后您将了解如何轻松地与Matlab工作区进行交互。 然后,我们将继续进行数据清洗,挖掘和分析机器学习中的各种数据类型,您将看到如何在绘图上显示数据值。 接下来,您将了解不同类型的回归技术,以及如何使用MATLAB函数将其应用于数据。 您还将探索分类技术,例如K最近邻分析和朴素贝叶斯算法,并了解决策树和规则学习者。 之后,您将深入研究无监督学习,并使用聚类方法(例如k均值方法和树状图)查找数据组。 您将了解神经网络的基本概念,并执行数据拟合,模式识别和聚类分析。 最后,您将探索特征选择和提取技术,以减少维度以提高性能。 在本书的最后,您将学习将它们放到实际案例中,涵盖主要的机器学习算法,并熟练使用MATLAB进行机器学习。 ##说明和导航所有代码都组织在文件夹
2022-09-12 20:46:39 693KB 系统开源
1
Loan_Default_Prediction:贷款违约预测的端到端机器学习过程,机器学习的最终项目ISpring2018 @ GWU
2022-09-12 10:11:45 1.08MB python data-science machine-learning random-forest
1