machine learning tools for matlab

上传者: minphael | 上传时间: 2022-09-13 15:05:12 | 文件大小: 7.25MB | 文件类型: ZIP
the tools contains the following algorithms: Character Recognition Using Bayesian Classifier FaceRecognitionAndReconstruction GMMClassification ImageSegmentation NeuralNetwork SVMClassification

文件下载

资源详情

[{"title":"( 73 个子文件 7.25MB ) machine learning tools for matlab","children":[{"title":"MachineLearning-master","children":[{"title":"Character Recognition Using Bayesian Classifier","children":[{"title":"CharacterRecognition_BayesianClassifier_CustomFeatures.m <span style='color:#111;'> 26.75KB </span>","children":null,"spread":false},{"title":"CharacterRecognition_BayesianClassifier_SphericalVariance.m <span style='color:#111;'> 14.46KB </span>","children":null,"spread":false},{"title":"CharacterRecognition_BayesianClassifier_CommonVariance.m <span style='color:#111;'> 12.04KB </span>","children":null,"spread":false},{"title":"CharacterRecognition_BayesianClassifier_SeparateVariance.m <span style='color:#111;'> 14.97KB </span>","children":null,"spread":false},{"title":"TestCharacters.zip <span style='color:#111;'> 576.98KB </span>","children":null,"spread":false},{"title":"Report.pdf <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"CharacterRecognition_BayesianClassifier_SeparateDiagonalVariance.m <span style='color:#111;'> 15.40KB </span>","children":null,"spread":false},{"title":"TrainCharacters.zip <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"CharacterRecognition_BayesianClassifier_DiagonalVariance.m <span style='color:#111;'> 15.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"GMMClassification","children":[{"title":"Pattern1.mat <span style='color:#111;'> 174.60KB </span>","children":null,"spread":false},{"title":"Test2.mat <span style='color:#111;'> 88.72KB </span>","children":null,"spread":false},{"title":"Test1.mat <span style='color:#111;'> 87.97KB </span>","children":null,"spread":false},{"title":"Result","children":[{"title":"AkshatBordia_RollNo_11010848_Assignment_4_Report.pdf <span style='color:#111;'> 373.34KB </span>","children":null,"spread":false},{"title":"pattern2_likelihood Plot.jpg <span style='color:#111;'> 31.11KB </span>","children":null,"spread":false},{"title":"Pattern1_likelihood Plot.jpg <span style='color:#111;'> 30.62KB </span>","children":null,"spread":false}],"spread":true},{"title":"GMMClassification.m <span style='color:#111;'> 5.55KB </span>","children":null,"spread":false},{"title":"Pattern2.mat <span style='color:#111;'> 176.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"SVMClassification","children":[{"title":"SVMClassification.m <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"Results","children":[{"title":"Akshat_Bordia_11010848_Assignment5.pdf <span style='color:#111;'> 698.53KB </span>","children":null,"spread":false},{"title":"SVM_2.jpg <span style='color:#111;'> 145.23KB </span>","children":null,"spread":false},{"title":"SVM_1.jpg <span style='color:#111;'> 142.08KB </span>","children":null,"spread":false},{"title":"SVM_3.jpg <span style='color:#111;'> 133.71KB </span>","children":null,"spread":false},{"title":"SVM_Average.jpg <span style='color:#111;'> 142.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"Dataset","children":[{"title":"Test","children":[{"title":"Test2.mat <span style='color:#111;'> 88.72KB </span>","children":null,"spread":false},{"title":"Test1.mat <span style='color:#111;'> 87.97KB </span>","children":null,"spread":false},{"title":"Test3.mat <span style='color:#111;'> 88.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Training","children":[{"title":"Pattern1.mat <span style='color:#111;'> 174.60KB </span>","children":null,"spread":false},{"title":"Pattern2.mat <span style='color:#111;'> 176.49KB </span>","children":null,"spread":false},{"title":"Pattern3.mat <span style='color:#111;'> 173.81KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"ImageSegmentation","children":[{"title":"GMMSegmentation","children":[{"title":"Result","children":[{"title":"AkshatBordia_RollNo_11010848_Assignment_4_Report.pdf <span style='color:#111;'> 373.34KB </span>","children":null,"spread":false},{"title":"Likelihood Plot.jpg <span style='color:#111;'> 32.89KB </span>","children":null,"spread":false},{"title":"Segmented Image.jpg <span style='color:#111;'> 94.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"ski_image.jpg <span style='color:#111;'> 30.76KB </span>","children":null,"spread":false},{"title":"normal.m <span style='color:#111;'> 148B </span>","children":null,"spread":false},{"title":"GMMSegmentation.m <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"OtsuSegmentation","children":[{"title":"Segmented Image based on Fisher Score Criterion.jpg <span style='color:#111;'> 38.76KB </span>","children":null,"spread":false},{"title":"OtsuSegmentationVariant.m <span style='color:#111;'> 2.14KB </span>","children":null,"spread":false},{"title":"cameraman.jpg <span style='color:#111;'> 23.36KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 18B </span>","children":null,"spread":false},{"title":"FaceRecognitionAndReconstruction","children":[{"title":"FaceRecognitionLDA.m <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"FaceReconstructionPCA.m <span style='color:#111;'> 7.01KB </span>","children":null,"spread":false},{"title":"Results","children":[{"title":"Task B Output","children":[{"title":"Accuracy Plot updated.jpg <span style='color:#111;'> 35.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"Task A Output","children":[{"title":"Face 2 Reconstruction","children":[{"title":"using top 150 eigenfaces.jpg <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"using top 4.jpg <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"using top.jpg <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"using all.jpg <span style='color:#111;'> 5.70KB </span>","children":null,"spread":false},{"title":"MSE Plot.jpg <span style='color:#111;'> 62.41KB </span>","children":null,"spread":false},{"title":"using top 15 (2).jpg <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false}],"spread":true},{"title":"Top Five Eigenfaces","children":[{"title":"final3.jpg <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"final5.jpg <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"final 4.jpg <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"final2.jpg <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"final1.jpg <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"Face 1 Reconstruction","children":[{"title":"using top 4.jpg <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false},{"title":"using top 25.jpg <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"using top.jpg <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"using top 150.jpg <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"MSE Plot.jpg <span style='color:#111;'> 76.80KB </span>","children":null,"spread":false},{"title":"using all eigenfaces.jpg <span style='color:#111;'> 4.59KB </span>","children":null,"spread":false}],"spread":false},{"title":"Plot of Variance Captured.jpg <span style='color:#111;'> 81.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"Akshat Bordia_11010848_Assignment2_Report.pdf <span style='color:#111;'> 625.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"FaceRecognitionPCA.m <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"NeuralNetwork","children":[{"title":"Result","children":[{"title":"Convergence of Perceptron.jpg <span style='color:#111;'> 22.44KB </span>","children":null,"spread":false},{"title":"Akshat_Bordia_11010848_Assignment5.pdf <span style='color:#111;'> 698.53KB </span>","children":null,"spread":false},{"title":"Convergence of Perceptron 2.jpg <span style='color:#111;'> 20.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"SLP2.m <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"SLP1.m <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"Dataset","children":[{"title":"Test","children":[{"title":"Test2.mat <span style='color:#111;'> 88.72KB </span>","children":null,"spread":false},{"title":"Test1.mat <span style='color:#111;'> 87.97KB </span>","children":null,"spread":false},{"title":"Test3.mat <span style='color:#111;'> 88.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Training","children":[{"title":"Pattern1.mat <span style='color:#111;'> 174.60KB </span>","children":null,"spread":false},{"title":"Pattern2.mat <span style='color:#111;'> 176.49KB </span>","children":null,"spread":false},{"title":"Pattern3.mat <span style='color:#111;'> 173.81KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明