朴素贝叶斯算法matlab代码-MATLAB-for-Machine-Learning:Packt出版的《MATLABforMachineLe

上传者: 38679233 | 上传时间: 2022-09-12 20:46:39 | 文件大小: 693KB | 文件类型: ZIP
朴素贝叶斯算法matlab代码用于机器学习的MATLAB 这是的代码存储库,由发行。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 对于许多机器学习的研究人员和数学专家来说,MATLAB是首选的语言。 本书将帮助您为初学者使用MATLAB建立机器学习基础。 您将首先使用MATLAB环境进行机器学习来为系统做好准备,然后您将了解如何轻松地与Matlab工作区进行交互。 然后,我们将继续进行数据清洗,挖掘和分析机器学习中的各种数据类型,您将看到如何在绘图上显示数据值。 接下来,您将了解不同类型的回归技术,以及如何使用MATLAB函数将其应用于数据。 您还将探索分类技术,例如K最近邻分析和朴素贝叶斯算法,并了解决策树和规则学习者。 之后,您将深入研究无监督学习,并使用聚类方法(例如k均值方法和树状图)查找数据组。 您将了解神经网络的基本概念,并执行数据拟合,模式识别和聚类分析。 最后,您将探索特征选择和提取技术,以减少维度以提高性能。 在本书的最后,您将学习将它们放到实际案例中,涵盖主要的机器学习算法,并熟练使用MATLAB进行机器学习。 ##说明和导航所有代码都组织在文件夹

文件下载

资源详情

[{"title":"( 48 个子文件 693KB ) 朴素贝叶斯算法matlab代码-MATLAB-for-Machine-Learning:Packt出版的《MATLABforMachineLe","children":[{"title":"MATLAB-for-Machine-Learning-master","children":[{"title":"Chapter05","children":[{"title":"DecisionTrees.m <span style='color:#111;'> 573B </span>","children":null,"spread":false},{"title":"NaiveBayes.m <span style='color:#111;'> 751B </span>","children":null,"spread":false},{"title":"NearestNeighborCassifiers.m <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"DiscriminantAnalysis.m <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter04","children":[{"title":"employees.xlsx <span style='color:#111;'> 11.55KB </span>","children":null,"spread":false},{"title":"RegressionExample.m <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"AirfoilSelfNoise.csv <span style='color:#111;'> 364.95KB </span>","children":null,"spread":false},{"title":"VehiclesItaly.xlsx <span style='color:#111;'> 10.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter02","children":[{"title":"coliseum.jpg <span style='color:#111;'> 285.17KB </span>","children":null,"spread":false},{"title":"Ferrari.txt <span style='color:#111;'> 152B </span>","children":null,"spread":false},{"title":"Exporting.m <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"matrix.txt <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"capri.xlsx <span style='color:#111;'> 11.58KB </span>","children":null,"spread":false},{"title":"MyMatrix.csv <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"Importing.m <span style='color:#111;'> 611B </span>","children":null,"spread":false},{"title":"MyMatrix.txt <span style='color:#111;'> 202B </span>","children":null,"spread":false},{"title":"apollo.wav <span style='color:#111;'> 124.12KB </span>","children":null,"spread":false},{"title":"matrix.csv <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"museum.xls <span style='color:#111;'> 32.00KB </span>","children":null,"spread":false},{"title":"MyMatrix.xls <span style='color:#111;'> 17.50KB </span>","children":null,"spread":false},{"title":"DataOrganization.m <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"Chapter06","children":[{"title":"HierarchicalClustering.m <span style='color:#111;'> 408B </span>","children":null,"spread":false},{"title":"PeripheralLocations.xls <span style='color:#111;'> 168.00KB </span>","children":null,"spread":false},{"title":"KMeansExample.m <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"GaussianMixtureModels.m <span style='color:#111;'> 615B </span>","children":null,"spread":false},{"title":"KMedoids Example.m <span style='color:#111;'> 355B </span>","children":null,"spread":false},{"title":"ClimaticData.xls <span style='color:#111;'> 106.50KB </span>","children":null,"spread":false},{"title":"Minerals.xls <span style='color:#111;'> 158.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"Chapter07","children":[{"title":"EngineFitting.m <span style='color:#111;'> 542B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter09","children":[{"title":"ConcreteQualityFitting.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"ThyroidDisease.m <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"Concrete_Data.xls <span style='color:#111;'> 122.00KB </span>","children":null,"spread":false},{"title":"StudentClustering.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"ClusterData.dat <span style='color:#111;'> 144.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter08","children":[{"title":"yacht_hydrodynamics.csv <span style='color:#111;'> 11.22KB </span>","children":null,"spread":false},{"title":"PrincipalComponentAnalysis.m <span style='color:#111;'> 882B </span>","children":null,"spread":false},{"title":"StepwiseRegression.m <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"seeds_dataset.csv <span style='color:#111;'> 9.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter03","children":[{"title":"CleaningData.m <span style='color:#111;'> 991B </span>","children":null,"spread":false},{"title":"CleaningData.xlsx <span style='color:#111;'> 10.71KB </span>","children":null,"spread":false},{"title":"ExploratoryStatistics.m <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"EmergencyCallsNew.xlsx <span style='color:#111;'> 8.30KB </span>","children":null,"spread":false},{"title":"ExploratoryVisualization.m <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"LifeExpectancy.xlsx <span style='color:#111;'> 8.33KB </span>","children":null,"spread":false},{"title":"EmergencyCalls.xlsx <span style='color:#111;'> 8.29KB </span>","children":null,"spread":false},{"title":"GlassIdentificationDataSet.xlsx <span style='color:#111;'> 24.73KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明