内容概要:本文介绍了Python实现GWO-BiLSTM-Attention多输入分类预测的详细项目实例。项目背景源于深度学习在多模态数据处理中的需求,旨在通过结合灰狼优化(GWO)、双向LSTM(BiLSTM)和注意力机制(Attention),构建一个高效处理多源数据的分类预测模型。文章详细阐述了项目的目标与意义,如提高分类精度、增强模型优化能力和解释性、实现多模态数据融合等。项目面临的主要挑战包括数据预处理、模型复杂性、优化问题、跨模态数据融合和模型泛化能力。文章展示了模型的具体架构,包括GWO优化模块、BiLSTM模块、Attention机制模块和融合层,并提供了相应的代码示例,涵盖GWO算法、BiLSTM层和Attention机制的实现。 适合人群:具备一定编程基础,尤其是对深度学习和机器学习有一定了解的研发人员和技术爱好者。 使用场景及目标:①提高多模态数据分类任务的精度,如医疗诊断、金融预测、情感分析等;②通过GWO优化算法提升模型的超参数优化能力,避免局部最优解;③通过Attention机制增强模型的解释性,明确输入特征对分类结果的影响;④通过BiLSTM捕捉时间序列数据的前后依赖关系,提升模型的鲁棒性。 其他说明:该项目不仅在学术研究上有创新,还在实际应用中提供了有效的解决方案,适用于多个领域,如医疗、金融、智能推荐、情感分析、自动驾驶和智能制造等。此外,文章还展示了如何通过绘制性能指标曲线来评估模型的效果。
2025-05-30 19:34:08 41KB Python DeepLearning BiLSTM Attention
1
基于时间序列预测的组合模型,CNN-LSTM-Attention、CNN-GRU-Attention的深度学习神经网络的多特征用电负荷预测。 关于模型算法预测值和真实值对比效果如下图所示,同时利用R2、MAPE、RMSE等评价指标进行模型性能评价。 关于数据:利用的是30分钟一采样的电力负荷单特征数据,其中还包含对应的其他影响特征如温度、湿度、电价、等影响影响因素;具体如图详情图中所示。 个人编码习惯很好,基本做到逐行逐句进行注释;项目的文件截图具体如图详情所示。 时间序列预测是一种通过分析历史数据点来预测未来数据点的方法,尤其在电力系统中,准确预测用电负荷对于电力调度和电网管理至关重要。随着深度学习技术的发展,研究者们开始尝试将复杂的神经网络结构应用于时间序列预测,以提升预测的准确度和效率。在本次研究中,提出了一种基于深度学习的组合模型,该模型结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和注意力机制(Attention),以实现对多特征用电负荷的预测。 CNN是一种深度学习模型,它能够在数据中自动学习到层次化的特征表示,特别适合处理具有空间特征的数据。在电力负荷预测中,CNN能够提取和学习电力数据中的时序特征,例如日周期性和周周期性等。 LSTM是一种特殊的循环神经网络(RNN),它通过引入门机制解决了传统RNN的长期依赖问题,能够有效捕捉时间序列中的长期依赖关系。而GRU作为LSTM的一种变体,它通过减少门的数量来简化模型结构,同样能够学习到时间序列数据中的长期依赖关系,但计算复杂度相对较低。 注意力机制是一种让模型能够聚焦于输入数据中重要部分的技术,它可以使模型在处理序列数据时动态地分配计算资源,提高模型对重要特征的识别能力。 在本研究中,通过结合CNN、LSTM/GRU以及Attention机制,构建了一个强大的组合模型来预测用电负荷。该模型能够利用CNN提取时间序列数据中的特征,通过LSTM/GRU学习长期依赖关系,并通过Attention机制进一步强化对关键信息的捕捉。 在数据方面,研究者使用了30分钟一采样的电力负荷单特征数据,并加入了温度、湿度、电价等多个影响因素,这些都是影响用电负荷的重要因素。通过整合这些多特征数据,模型能够更全面地捕捉影响用电负荷的多维度信息,从而提高预测的准确性。 为了评估模型性能,研究者采用了多种评价指标,包括R2(决定系数)、MAPE(平均绝对百分比误差)和RMSE(均方根误差)。这些指标能够从不同角度反映模型预测值与真实值的接近程度,帮助研究者对模型的性能进行综合评价。 研究者在文章中详细展示了模型算法预测值和真实值的对比效果,并对结果进行了深入分析。此外,项目文件中还有大量代码截图和注释,体现了研究者良好的编程习惯和对项目的认真态度。 本研究提出了一种结合CNN、LSTM/GRU和Attention机制的深度学习组合模型,该模型在多特征用电负荷预测方面展现出较好的性能。通过对历史电力负荷数据及相关影响因素的学习,模型能够准确预测未来用电负荷的变化趋势,对于电力系统的运营和管理具有重要的应用价值。
2025-05-30 13:51:55 425KB 数据仓库
1
内容概要:本文详细介绍了两种用于多特征用电负荷预测的深度学习组合模型——CNN-LSTM-Attention和CNN-GRU-Attention。通过对30分钟粒度的真实电力数据进行处理,包括数据预处理、滑动窗口生成、归一化等步骤,作者构建并优化了这两种模型。模型结构中,CNN用于提取局部特征,LSTM/GRU处理时序依赖,Attention机制赋予关键时间点更高的权重。实验结果显示,CNN-GRU-Attention模型在RMSE和MAPE指标上略优于CNN-LSTM-Attention,但在电价波动剧烈时段,LSTM版本更为稳定。此外,文中还讨论了模型部署时遇到的问题及其解决方案,如累积误差增长过快、显存占用高等。 适合人群:从事电力系统数据分析、机器学习建模的研究人员和技术人员,尤其是对深度学习应用于时序预测感兴趣的读者。 使用场景及目标:适用于需要精确预测电力负荷的场景,如电网调度、能源管理和智能电网建设。目标是提高预测精度,降低预测误差,从而优化电力资源配置。 其他说明:文中提供了详细的代码片段和模型架构图,帮助读者更好地理解和复现实验。同时,强调了数据预处理和特征选择的重要性,并分享了一些实用的经验技巧,如特征归一化、Attention层位置的选择等。
2025-05-29 18:16:10 675KB
1
内容概要:本文介绍了一种改进的视觉Transformer(ViT)模型,重点在于引入了三重注意力机制(TripletAttention)。TripletAttention模块结合了通道注意力、高度注意力和宽度注意力,通过自适应池化和多层感知机(MLP)来增强特征表达能力。具体实现上,首先对输入特征图进行全局平均池化和最大池化操作,然后通过MLP生成通道注意力图;同时,分别对特征图的高度和宽度维度进行压缩和恢复,生成高度和宽度注意力图。最终将三种注意力图相乘并与原特征图相加,形成增强后的特征表示。此外,文章还展示了如何将TripletAttention集成到预训练的ViT模型中,并修改分类头以适应不同数量的类别。; 适合人群:熟悉深度学习和计算机视觉领域的研究人员和技术开发者,尤其是对注意力机制和Transformer架构有一定了解的人群。; 使用场景及目标:①研究和开发基于Transformer的图像分类模型时,希望引入更强大的注意力机制来提升模型性能;②需要对现有ViT模型进行改进或扩展,特别是在特征提取和分类任务中追求更高精度的应用场景。; 阅读建议:本文涉及较为复杂的深度学习模型和注意力机制实现细节,建议读者具备一定的PyTorch编程基础和Transformer理论知识。在阅读过程中可以结合代码逐步理解各个模块的功能和相互关系,并尝试复现模型以加深理解。
2025-05-06 10:07:59 3KB Pytorch 深度学习 图像处理
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
基于深度学习混合模型的时序预测系统:CNN-LSTM-Attention回归模型在MATLAB环境下的实现与应用,基于多变量输入的CNN-LSTM-Attention混合模型的数据回归与预测系统,CNN-LSTM-Attention回归,基于卷积神经网络(CNN)-长短期记忆神经网络(LSTM)结合注意力机制(Attention)的数据回归预测,多变量输入单输入,可以更为时序预测,多变量 单变量都有 LSTM可根据需要更为BILSTM,GRU 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel 、运行环境要求MATLAB版本为2020b及其以上 、评价指标包括:R2、MAE、MSE、RMSE等,图很多,符合您的需要 、代码中文注释清晰,质量极高 、测试数据集,可以直接运行源程序。 替你的数据即可用适合新手小白 、 注:保证源程序运行, ,核心关键词:CNN-LSTM-Attention; 回归预测; 多变量输入单输入; 时序预测; BILSTM; GRU; 程序调试; MATLAB 2020b以上; 评价指标(R2、MAE、MSE、RMSE); 代码中文注释清晰; 测试数
2025-04-24 22:28:38 3.4MB sass
1
本项目使用了word2vec的中文预训练向量 模型分别有BiLSTM-attention和普通的LSTM两种 1、在Config中配置相关参数 2、然后运行DataProcess.py,生成相应的word2id,word2vec等文件 3、运行主函数main.py,得到训练好的模型,并保存模型 4、运行eval.py,读取模型,并得到评价 5、模型准确率平均85%左右
2025-04-08 12:59:45 119.64MB BI-LSTM attention
1
"基于CNN-BILSTM-Attention及SAM-Attention机制的深度学习模型:多特征分类预测与效果可视化",CNN-BILSTM-Attention基于卷积神经网络-双向长短期记忆神经网络-空间注意力机制CNN-BILSTM-SAM-Attention多特征分类预测。 多特征输入单输出的二分类及多分类模型。 程序内注释详细替数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。 多边形面积PAM,分类准确率,灵敏度,特异性,曲线下面积AUC,Kappa系数,F_measure。 ,核心关键词: CNN-BILSTM-Attention; 空间注意力机制; 多特征分类预测; MATLAB程序; 分类效果图; 迭代优化图; 混淆矩阵图; 多边形面积; 分类准确率; 灵敏度; 特异性; AUC; Kappa系数; F_measure。,基于多特征输入的CNN-BILSTM-Attention模型及其分类预测效果图优化分析
2025-03-15 17:48:02 327KB gulp
1
脑机接口(BCI)是一项有可能改变世界的前沿技术。脑电图(EEG)运动图像(MI)信号已被广泛用于许多BCI应用中以协助残疾人控制设备或环境、甚至增强人的能力。然而大脑信号解码的有限性能限制了BCI行业的广泛发展。在这篇文章中,我们提出了一个基于注意力的时间卷积网络(ATCNet)用于基于EEG的运动图像分类。该ATCNet模型利用多种技术来提高MI分类的性能,参数数量相对较少。ATCNet采用了科学的机器学习来设计一个特定领域的深度学习模型,具有可解释和可说明的特征,多头自我关注来突出MI-EEG数据中最有价值的特征,时间卷积网络来提取高层次的时间特征,以及基于卷积的滑动特征。颞部卷积网络提取高层次的时间特征,基于卷积的滑动窗口有效地增强了MI-EEG数据。所提出的模型在BCI中的表现优于目前最先进的技术。在IV-2a数据集中,提议的模型优于目前最先进的技术,准确率为85.38%和70.97%。
2025-02-08 18:36:13 8.53MB
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1