Neural-Machine-Translation:使用注意机制的神经机器翻译

上传者: 42133415 | 上传时间: 2022-03-28 11:05:27 | 文件大小: 5.82MB | 文件类型: -
神经机器翻译 这是使用Encoder-Decoder机制以及Attention机制(( )于2016年引入的神经机器翻译的一种实现。Encoder-decoder体系结构通常使用一种编码器,该编码器对将源句子转换成固定长度的向量,解码器根据该向量生成翻译。 本文推测使用固定长度向量是提高此基本编码器-解码器体系结构性能的瓶颈,并建议通过允许模型自动(软)搜索源语句的一部分来扩展此范围。与预测目标词相关,而不必明确地将这些部分形成为一个困难的部分。 编码器: seq2seq网络的编码器是RNN,它为输入句子中的每个单词输出一些值。 对于每个输入字,编码器输出一个向量和一个隐藏状态,并将隐藏状态用于下一个输入字。 解码器: 在最简单的seq2seq解码器中,我们仅使用编码器的最后一个输出。 最后的输出有时称为上下文向量,因为它对整个序列中的上下文进行编码。 该上下文向量用作解码器的初始隐

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明