神经网络与模式识别方面的经典书籍,没下过的来下
2022-01-06 11:35:51 22.44MB Neural Networks Pattern Recognition
1
PFE SSR-监控环境单包SDN PFE SSR(NET5535)2018-2019-TélécomSudParis FélixMolina,Erwan Goarguer-格雷戈里·布兰克,Mustafizur Shahid 语境 范式软件定义网络(SDN)可以集中存储所有信息。 Lesréseauxdu futur,特别是lesréseauxIoT(物联网),serontportéspar ce paradigmeréseau。 入侵防御系统(IDS)的Afin d'assurer lasécuritécesréseaux。 作为IDS estdéployéau niveau ducon
2021-12-29 17:00:39 40KB deep-neural-networks deep-learning sdn ids
1
自动驾驶中的深度强化学习 最适合离散操作:4名工人,学习率1e-4 无法使其在连续动作空间中正常工作; 它产生的动作出了问题 A3C创意 总览 人工神经网络的架构
2021-12-27 23:11:40 224.81MB python multi-threading deep-neural-networks latex
1
流失预测 使用人工神经网络的客户流失预测 问题陈述 任务是预测某个客户是否会放弃公司。 也就是说,要预测“客户流失”属性。 通常,为每个客户国家/地区提供的信息帐户长度区号电话国际计划VMail计划VMail消息日间日间通话日间收费夏娃·明斯平安夜电话夏娃冲锋夜分钟夜间通话夜间收费国际分钟国际通话国际收费客户服务电话搅拌? 内容 数据探索 数据预处理 训练模式 可视化模型
1
UCI甲状腺分类-​​Python,Keras,scikit-learn,ANN 该项目是针对UCI-甲状腺疾病数据集上的分类问题而创建的。 它使用ANN进行预测。 预测类为: 1-甲状腺功能亢进 2次普通 3-普通 数据集 UCI资料库中的甲状腺疾病。 框架/库 凯拉斯 scikit学习 入门 这些说明将使您简要了解如何设置环境并在本地计算机上运行以进行开发和测试。 先决条件 python3.5或更高版本 凯拉斯 scikit学习 麻木 大熊猫 设置和运行测试 运行python -V检查安装 安装所有必需的库。 从终端执行以下命令以运行测试: python main.py 注意:
2021-12-25 09:46:09 156KB python deep-neural-networks deep-learning numpy
1
时间序列分类的深度学习 这是发表在“时间序列分类的深度学习:评论”的配套资料库,该也可以在。 数据 该项目中使用的数据来自两个来源: ,其中包含85个单变量时间序列数据集。 ,其中包含13个多元时间序列数据集。 码 代码划分如下: python文件包含运行实验所需的代码。 文件夹包含必要的功能,以读取数据集并可视化绘图。 文件夹包含9个python文件,每个文件针对本文测试的每个深度神经网络。 要在一个数据集上运行模型,应发出以下命令: python3 main.py TSC Coffee fcn _itr_8 这意味着我们将在Coffee数据集的单变量UCR存档上启动模型(有
1
神经网络后处理 使用卷积神经网络进行Unity的后处理。 使用pix2pix / GAN训练的CNN模型,快速的神经样式传递您可以离线创建样式并使用自己的数据训练网络,从而制作出NNPP! 带有pix2pix或快速样式转移的培训师 Keras模型和Unity重量说明 受过快速神经风格转换训练: 这是运行时和培训的源代码。 预训练模型在AssetStore上 如何运行: 打开场景场景并运行! 需求 Unity 2018.2+ 支持计算着色器(DX11 +,Vulkan,Metal) 参考
1
图神经网络无疑是现在最火的AI技术之一,在本文中,全面详细地介绍了GNN的背景动机、GCN、循环关系网络、通用网络。
2021-12-21 17:23:45 4.11MB GNN
1
医疗保健分析 存储库内容: Python Notebook文件包含用于数据探索,功能工程和机器学习模型(朴素贝叶斯,XGBoost,神经网络)的项目代码。 PDF报告文件包含项目,谓词和结果的概述。 Datasets.zip包含项目中使用的测试和训练数据。 HTML文件是jupyter笔记本的降价促销,其中所有输出均无需使用python或其IDE即可查看。 介绍: 医疗机构承受着越来越大的压力,以改善患者的护理效果并获得更好的护理。 尽管这种情况是一个挑战,但它也为组织提供了一个机会,可以利用其数据中的更多价值和洞察力来显着提高护理质量。 医疗保健分析是指使用定量和定性技术对数据进行分析,以探索所获取数据中的趋势和模式。 尽管医疗保健管理使用各种指标来衡量绩效,但患者的住院时间很重要。 能够预测住院时间(LOS),使医院能够优化其治疗计划以减少LOS,从而降低患者,工作人员和
1
InceptionTime:查找AlexNet进行时间序列分类 这是我们题为《 论文》( )的配套资料库,该论文发表在,也可在。 起始模块 数据 该项目中使用的数据来自。 我们使用了列出的85个数据集。 要求 您将需要安装文件中存在的以下软件包。 代码 代码划分如下: python文件包含运行实验所需的代码。 文件夹包含必要的功能,以读取数据集并可视化绘图。 文件夹包含两个python文件:(1) inception.py包含初始网络; (2) nne.py包含集成了一组Inception网络的代码。 为您的PC修改代码 您应该首先考虑更改以下行。 这是所有内容(数据和结果)的根文件,我们称之为root_dir 。 之后,您应该在root_dir内创建一个名为archives的文件夹,其中应包含文件夹UCR_TS_Archive_2015 。 后者将为每个数据集包含一个名为da
2021-12-19 16:33:04 707KB scalable deep-learning neural-networks alexnet
1